535/1 PHYSICS Paper 1 Tue 2nd Feb. 2021

Uganda Certificate of Education TOPICAL REVISION QUESTIONS SET 2 OLEVEL PHYSICS

Paper 1
Topic: Work, Energy & Power

NAME:	STREAM:
N A IVI H ·	NIRHAW:
INAME	SINDAM

INSTRUCTIONS:

Answer all questions in this paper.

Mathematical tables, side rulers and silent non-programmable calculators may be used.

These values of physical quantities may be useful to you.

Acceleration due to gravity = 10 m s^{-2}

Specific heat capacity of water = $4200 \text{ J kg}^{-1} \text{ K}^{-1}$

SECTION A: (71 Marks)

Answer all questions in this section.

Question 1:

A person pushes a toy cart along a level road and lets it to go. Which one of the following presents the correct order of energy changes which occur when the cart slows down to rest?

- A. Heat energy \rightarrow Kinetic energy + Sound energy.
- B. Kinetic energy \rightarrow Heat energy + Sound energy.
- C. Kinetic energy \rightarrow Potential energy + Sound energy.
- D. Potential energy \rightarrow Heat energy + Sound energy.

Question 2:

Find the power expended when a pump lifts 200 kg of water through a vertical height of 0.6 m in 1 s.

- A. 33.3 W
- B. 120.0 W
- C. 333.3 W
- D. 1200.0 W

Question 3:

The energy transferred from one point to another by moving charges is

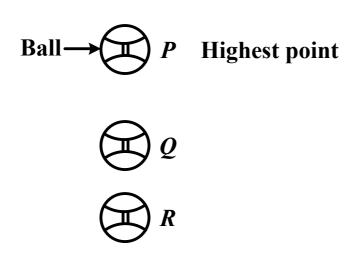
- A. light energy.
- B. electrical energy.
- C. sound energy.
- D. chemical energy.

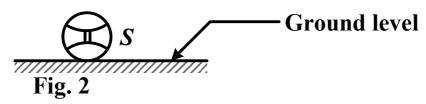
Question 4:

An engine rated 10,000 watts raises a body vertically at a velocity of 20 m s^{-1} . Find the mass of the body in kg.

- A. 5.0×10^{1}
- B. 5.0×10^2
- C. 2.0×10^4
- D. 2.0×10^5

Question 5:


The energy stored in a moving body depends on its


- (i). mass.
- (ii). volume.
- (iii). velocity.

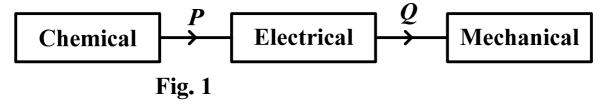
	В. С.	(i) only.(i) and (ii) only.(i) and (iii) only.(i), (ii) and (iii).	
_	tion 6		
		ng devices convert electric energy to heat energy.	
(i).	Cooke		
		ric iron.	
-		ric fan.	
(IV).	Refrig	gerator.	
	Λ	(i), (ii) and (iii) only.	
		(i) and (ii) only.	
		(i) and (iii) only.	
		(iii) and (iv) only.	
	Ъ.	(m) and (iv) only.	
Ques	tion 7	' :	
-		s is raised from a height of 0.5 m to a height of 2 m in 2 s.	Find
		expended in lifting the bag.	
•	A.		
	B.	75 W.	
	C.	10 W.	
	D.	7.5 W.	
Ouest	tion 8):	
_		stored in a battery in a solar system is	
	A.	solar energy.	
	В.	chemical energy.	
	C.	electrical energy.	
	D.	nuclear energy.	لــــا

Question 9:

Figure 2 shows a ball falling vertically downwards.

Which **one** of the following statements is **true** about the kinetic energy of the ball?

- A. Kinetic energy at Q is equal to kinetic energy at R.
- B. Kinetic energy at Q is less than kinetic energy at P.
- C. Kinetic energy at **R** is greater than kinetic energy at
- D. Kinetic energy at **P** is less than kinetic energy at **S**.


Question 10:

Which one of the following is **not** a primary source of energy?

- A. Dry cell.
- B. The sun.
- C. Water.
- D. Wind.

Question 11:

Figure 1 shows energy changes by two devices *P* and *Q*

P and Q are

	P	Q
A.	dynamo	motor
B.	battery	dynamo
C.	battery	motor
D.	dynamo	battery

Question 12:

A car travelling at a speed of 72 km h^{-1} overcomes a resistance of 30 N. Find the power developed by the engine of the car in watts.

A.
$$72 \times 30 \times 1000$$
 3600

B.
$$\frac{30 \times 3600 \times 72}{1000}$$

C.
$$\frac{30 \times 3600 \times 1000}{72}$$

D.
$$72 \times 3600 \times 1000$$

Question 13:

The source of geothermal energy is

- A. sun.
- B. earth.
- C. moon.
- D. water.

Question 14:

A person of mass 20 kg develops a power of 20 W on climbing steps in 120 s. If each step is 0.2 m high, find the number of steps.

A.
$$\frac{20 \times 20}{20 \times 0.2}$$

B.
$$\frac{20 \times 0.2}{20 \times 120}$$

$$C. \quad \frac{20 \times 120}{200 \times 0.2}$$

D.
$$\frac{0.2 \times 200}{20 \times 120}$$

Question 15:

The energy changes that take place when a stone is fired using a catapult and hits glass are

- A. Kinetic \rightarrow heat + sound \rightarrow elastic potential energy.
- B. Kinetic \rightarrow elastic potential energy \rightarrow heat + sound energy.
- C. Elastic potential energy \rightarrow sound + heat \rightarrow kinetic energy.

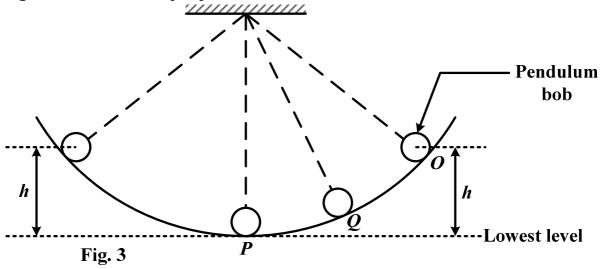
D. Elastic potential energy \rightarrow kinetic energy \rightarrow heat + sound energy. **Question 16:** Which of the following forms of energy is conserved in biogas? Chemical energy. A. Potential energy. В. C. Kinetic energy. D. Heat energy. **Question 17:** The energy change that takes place when a hot metal releases an electron is Heat energy \rightarrow Potential energy. B. Potential energy \rightarrow Kinetic energy. C. Heat energy \rightarrow Kinetic energy. Heat energy \rightarrow Electrical energy. D. **Question 18:** A power of 0.5 W is developed when a body of mass 200 g is raised to the top of a wall in 20 s. Find the height of the wall. 5.0×10^{-3} m. A. B. 5.0×10^{-2} m. C. 5.0×10^{-1} m. 5.0×10^{0} m. D. **Question 19:** Which one of the following sources of energy is/are non-renewable? (i). Solar energy. (ii). Fossil fuels. (iii). Tidal power. (i) only. A. (ii) and (iii) only. B. C. (ii) only. D. (i) and (iii) only.

Question 20:

An engine rated 1000 W raises water through a vertical height of 50 m in 10 s. Find the weight of water raised.

- A. 5.0×10^{-1} N.
- B. 2.0×10^{1} N.
- C. $2.0 \times 10^2 \text{ N}$.

D.	$5.0 \times 10^3 \text{ N}.$	
Question 2	<u>1:</u>	
The energy	stored in an accumulator is	
A.	heat energy.	
B.	chemical energy.	
C.	electrical energy.	
D.	mechanical energy.	
Question 2	<u>2:</u>	
The energy	which a body has by reason of its motion is	
A.	Potential energy.	
B.	Kinetic energy.	
C.	Chemical energy.	
D.	Internal energy.	


Question 23:

A boy of mass 20 kg develops a power of 20 W after climbing steps for 80 s. If each step is 20 cm high, find the number of steps climbed.

A. 400 steps.B. 100 steps.C. 40 steps.D. 4 steps.

Ouestion 24:

Figure 3 shows a simple pendulum bob set into oscillation.

Which of the following statements is true about its energy changes during the motion?

A.	Kinetic energy at P is less than potential energy at Q .					
В.	Potential energy at P is greater than Kinetic energy					
C.	at Q . Kinetic energy at P is equal to potential energy at					
D.	O.Potential energy at P is equal to Kinetic energy at Q.					
Question	<u> 25:</u>					
The energ	gy change that occurs in a loud speaker is					
A.	Electrical to sound energy.					
B.	Kinetic to sound energy.					
C.	Sound to electrical energy.					
D.	Potential to sound energy.					
Question						
	fts a mass of 500 kg through a height of 12 m in 5 s. Find the					
power ou						
A.	$500 \times 5 \times 12 \text{ W}$ B. $\frac{500 \times 12 \times 5}{10} \text{ W}$					
0						
C.	$\frac{500 \times 10 \times 12}{5} \text{ W} \qquad \qquad \text{D.} \frac{500 \times 12}{10 \times 5} \text{ W}$					
	5 10 × 5					
Question	<u>27:</u>					
During th	e power stroke of a petrol engine, the					
A.	inlet valve opens.					
В.	piston moves down.					
C.	expanding gas pushes the piston down.					
D.	burnt gas is pushed out from the cylinder.					
Question						
	ody is raised above the ground its gravitational potential ene	rgy				
A.						
В.						
C.						
D.	changes to kinetic energy.					

Which one of the following devices converts electrical energy to mechanical energy?

	A. B. C. D.	Thermopile. Battery. Dynamo. Motor.	
Questi A car e		80: e exerts a force of 500 N in moving 1000 m in 200 s. Calcu	ulate
the pov	wer d	developed by the engine.	
	A.	200 W.	
	B.	500 W.	
		1000 W.	
	D.	2500 W.	
Questi	<u>on 3</u>	<u>81:</u>	
The po	ssibl	le energy transfer in an electric bulb is	
	A.	light energy to heat energy.	
	B.	heat energy to electrical energy.	
	C.	electrical energy to light energy.	
	D.	light energy to electrical energy.	
Questi	on 3	<u>32:</u>	
The pri	incip	ole of conservation of energy states that	
	A.	energy is the ability to do work.	
	B.	energy is composed of kinetic and potential energy.	
	C.	energy will always be converted from one form to another.	
	D.	energy cannot be created or destroyed but it can be changed from one form into another.	
Questi	on 3	!3.	
		s one minute to lift 4 bags of sugar each of weight 50 N th	rough
		1.5 m. Calculate the power expended.	nougn
	A.	1.25 W	
	B.	5.00 W	
	C.	75.00 W	
	D.	300.00 W	
Questi	<u>on</u> 3	3 4 :	
•		power stroke of a four stroke petrol engine	
_	-	lug sparks.	

(i). the piston moves up.

(iii). both valves remain closed.

(iv).	the p	oiston moves down wards.	
	A.	(i) and (ii) only	
	B.	(i) and (ii) only.	
	C.	(i), (ii) and (iii) only.	
	D.	(i), (iii) and (iv) only.	
Ques	stion :	<u>35:</u>	
A ma	ın lifts	s a mass of $300~\mathrm{kg}$ through a vertical height of $10~\mathrm{m}$ in	12 s. What
powe	er doe	es he expend?	
	A.	200 W	
	B.	360 W	
	C.	2500 W	
	D.	36000 W	
Ques	stion :	<u>36:</u>	
		rce ${m F}$, acts on a body, its kinetic energy increases by 8	00 J over a
dista		f 2 m. What is the value of the force?	
	A.	1600 N	
		80 N	
		400 N	
	D.	$2.5 \times 10^{-3} \text{ N}$	
Ques	stion :	<u>37:</u>	
Whice engire		he following shows the correct stages in an internal c	ombustion
Ü	A.	compression \rightarrow power \rightarrow exhaust \rightarrow induction	
	B.	exhaust \rightarrow induction \rightarrow compression \rightarrow power	
	C.	induction \rightarrow power \rightarrow compression \rightarrow exhaust	
	D.	induction \rightarrow compression \rightarrow power \rightarrow exhaust	
Ques	stion :	<u>38:</u>	
_		\overline{ts} $\overline{4}$ bricks per minute through a height of 1.5 m. Find	the power
that	is exp	ended if each weighs 100 N.	
	A.	2.5 W	
	B.	10.0 W	
	C.	150.0 W	
	D	600 0 W	

Question 39:

In a four-stroke combustion engine, the correct order of strokes is

- A. compression \rightarrow power \rightarrow exhaust \rightarrow induction
- B. $exhaust \rightarrow compression \rightarrow power \rightarrow induction$
- C. induction \rightarrow compression \rightarrow power \rightarrow exhaust
- D. induction \rightarrow power \rightarrow compression \rightarrow exhaust

Question 40:

A crane raises a mass of 500 kg vertically upwards at a speed of 10 m s⁻¹, find the power developed.

- A. 5.0×10^{0}
- B. 5.0×10^{1}
- C. 5.0×10^2
- D. 5.0×10^4

Question 41:

A girl whose mass is 50 kg runs up a stair case 25 m high in 4 s. Find the power she develops.

A. $\frac{50 \times 4}{25} \text{ W}$

C. $\frac{50 \times 25}{4}$ W

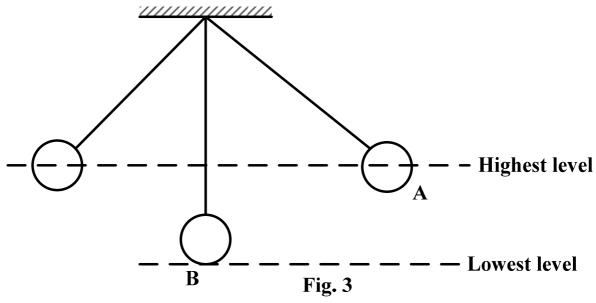
B. $\frac{50 \times 10}{25 \times 4}$ W

D. $\frac{50 \times 10 \times 25}{4} \text{ W}$

Question 42:

A body of mass m kg and height h m form the ground has

- A. total gravitation potential energy = mh
- B. the greatest gravitational potential energy when at height, h
- C. the greatest potential energy when it just drops to the ground
- D. the least potential energy when at height $\frac{1}{2}h$ to the ground


Question 43:

A man lifts a weight of 300 N through a height of 2 m in 6 s. Determine the power he develops

- A. 25 W
- B. 100 W

C.	600 W	
D.	900 W	
Ouestion	44:	
•	weling at a constant speed of 20 m s ^{-1} overcomes a resis	tive
	kN. The power of the train is	
A.	(8×20) W.	
B.	$(8 \times 10 \times 20)$ W.	
C.	$(8 \times 100 \times 20)$ W.	
D.	$(8 \times 1000 \times 20)$ W.	
Question	45:	
=	rated at 400 W. How many kilograms of water can it rais	se in one
	ugh a height of 72 m?	
A.	0.8 kg	
В.	5.6 kg	
C.	33.3 kg	
D.	2000 kg.	
Question	<u>46:</u>	
Which one	e of the following statements is true about energy	
transform	ation?	
A.	A steam engine changes heat energy to mechanical	
	energy	
B.	A thermopile changes electrical energy to heat	
	energy	
C.	A dynamo changes electrical energy to mechanical	
	energy	
D.	A microphone changes electrical energy to sound	
	energy	

Question 47:

The diagram in the figure 3 shows an oscillation pendulum lob. Which of the following statements is true about its motion?

- A. the kinetic energy at B is equal to the kinetic energy at A
- B. the kinetic energy at B is less than the potential energy at A
- C. the kinetic energy at B is equal to the potential energy at A.
- D. the kinetic energy at B is greater than the potential energy at Z

Question 48:

An engine exerts a force of 2000 N at a speed of 15 m s⁻¹. Find the power developed by the engine in kW

- A. 30000
- B. 3000
- C. 300
- D. 30

Question 49:

Which of the following forms mechanical energy

- A. electrical energy and kinetic energy
- B. potential energy and nuclear energy
- C. nuclear energy and kinetic energy
- D. potential energy and kinetic energy

Question 50:

A constant force of 5 N acts on a body and moves it through a distance of 20 m in 10 seconds. Calculate its power.

- A. 2.5 W
- B. 10 W
- C. 40 W
- D. 100 W

Question 51:

A mouse of mass 0.03 kg climbs through a distance of 2 m up a wall in 4 s. The power expended in watts is

- A. $0.03 \times 2 \times 4 \times 10$
- C. $0.03 \times 4 \times 10$
- B. $\frac{0.03 \times 4 \times 2}{10}$
- $D. \quad \frac{0.03 \times 2 \times 10}{4}$

Question 52:

A bullet of mass 0.02 kg is fired with a speed of 40 m s^{-1} . Calculate its kinetic energy.

- A. 0.4 J
- B. 0.8 J
- C. 16 J
- D. 32 J

Question 53:

A water pump rises 2000 kg of water through a vertical height of 72 m in one hour. Calculate the power of the pump

- A. 40,000 W
- B. 4,000 W
- C. 400 W
- D. 40 W

Question 54:

A body pulls a block of wood with a force of 30 N through a distance of 300 m in 2 minutes. Find the power he develops, if he pulls the block at a constant speed.

A. 30×300

- B. $\frac{30 \times 300}{2 \times 60}$
- $C. \quad \frac{30 \times 2 \times 60}{300}$

- D. $\frac{300}{2 \times 60 \times 30}$

Question 55:

A bullet of mass 5 g is fired at a speed of 400 m s⁻¹. How much energy does it have?

A.
$$\frac{1}{2} \times 5 \times 10^2 \times 400$$
 joules

B.
$$\frac{1}{2} \times 5 \times 10^3 \times 400 \text{ joules}$$

C.
$$\frac{1}{2} \times 5 \times 10^{-3} \times 400 \times 400$$
 joules
D. $\frac{1}{2} \times 5 \times 10^{2} \times 400 \times 400$ joules

D.
$$\frac{1}{2} \times 5 \times 10^2 \times 400 \times 400$$
 joules

Question 56:

An object of mass 2 kg dropped from a top of a building hits the ground with a kinetic energy of 900 J. The height of the building is

- 30 m Α.
- B. 45 m
- C. 90 m
- 180 m D.

Question 57:

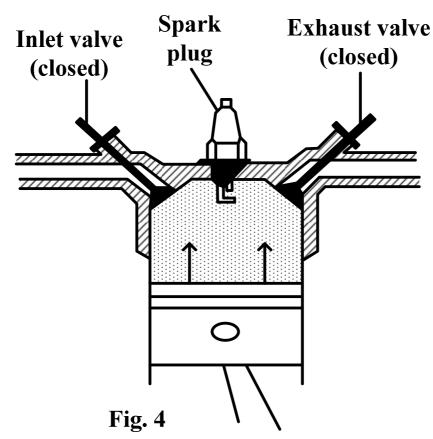
A force of 50 N moves an object through a distance of 200 m in 40 s. Find the power expended

- 100 W A.
- B. 160 W
- C. 200 W
- D. 250 W

Question 58:

A car of mass 1.5×10^3 kg climbs a hill in 900 s. If the top of the hill is 50 m above the starting point find the average power output of the engine.

- $1.38 \times 10 \text{ W}$ Α.
- B. $8.33 \times 10^{2} \text{ W}$
- C. $5.00 \times 10^3 \text{ W}$
- D. $5.0 \times 10^5 \text{ W}$


Question 59:

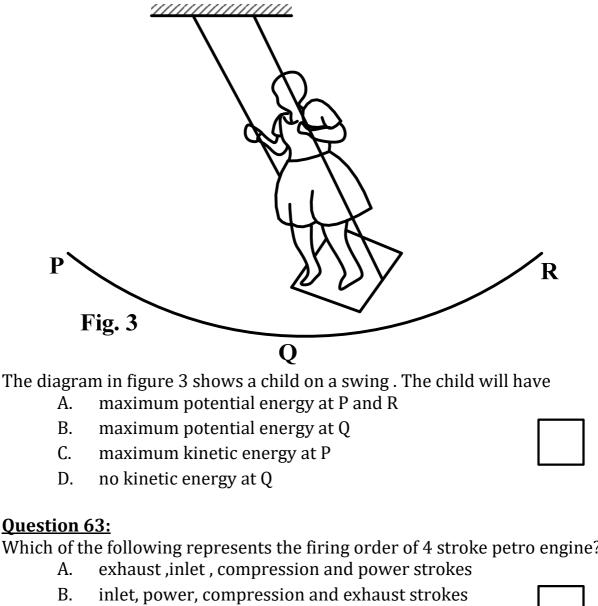
A man of mass 50 kg climbs 40 steps up stairs. If each step is 0.2 m high the potential energy gained is

- A. 100 J
- B. 400 I

- C. 4,000 J
- D. 20,000 J

Question 60:

The diagram in figure 4 shows part of a combustion engine. What is the likely stroke in the bicycle?


- A. Inlet stroke
- B. Power stroke
- C. Exhaust stroke
- D. Compression stroke

Question 61:

 $10^6 \ \text{kg}$ of water falls from a height of 50 m every second. Calculate the power generated

- A. $2.0 \times 10^4 \text{ W}$
- B. $2.0 \times 10^5 \text{ W}$
- C. $5.0 \times 10^7 \text{ W}$
- D. $5.0 \times 10^8 \text{ W}$

Question 62:

Question 63:

Which	of the	following	represents	the fir	ing order	of 4	stroke	netro	engine
VVIIICII	or the	Tonowing	represents	the m	mg or uer	UI 4	SHOKE	peuo	engme:

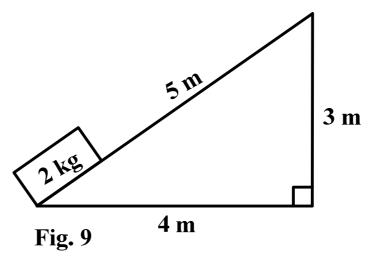
- C. power, compression, inlet and exhaust strikes
- D. inlet, power, exhaust and compression strokes

Question 64:

A machine which is 80% efficient is run by an engine with an output of 40 W. The time taken to raise a load of 1500 N through 0.15 m will be

- A. 4.5 s
- B. 5.6 s
- C. $7.0 \, s$
- D. 28.1 s

Question 65:


	troke internal combustion engine, the work required for init	tial
	and compression comes from	
A.	rotation K.E stored in the flywheel	
В.	movement of the steering wheel	
C.	separate starter motor	
D.	sparking plug	
Question	<u>66:</u>	
A stone of	mass $20~\mathrm{g}$ falls through a distance of $10~\mathrm{m}$. Calculate the kin	etic
energy it l	oses.	
A.	0 J	
	2 J	
C.	200 J	
D.	2000 J	
Question	<u>67:</u>	
A fly whee	el connected to an internal combustion engine is made heavy	/ in
order to		
A.	store rotational kinetic energy	
В.	store kinetic energy	
C.	produce a spark	
D.	helps valves to open at regular intervals	
Question	<u>68:</u>	
In a four-s	stroke internal combustion engine, the work required for ini	tial
induction	and compression comes from	
A.	the rotational kinetic energy stored in the fly wheel	
B.	the movement of the steering wheel	
C.	the separate starter motor	
D.	the sparking plug	
Question	<u>69:</u>	
•	rce of 30 N is applied to a trolley, the trolley moves through	a
distance o	of 10 m in 20 s in the direction of the force. The average power	er
developed	l by the trolley is	
A.	6.67 W	
B.	60 W	
C.	15 W	
D.	7.5 W	

Question 70:

A machine lifts a load of $5000\,\mathrm{N}$ through a distance of $10\,\mathrm{m}$ in $5\,\mathrm{s}$. The average power of the machine is

- A. 0.1 kW
- B. 10 kW
- C. 50 kW
- D. 250 kW

Question 71:

A brick of mass 2 kg is lifted to a height of 3 m along a smooth, inclined plane 5 m long, as shown in figure 9. The work done is

- A. 10 J
- B. 60 J
- C. 6 J
- D. 100 J

END

Available at any of the following outlets:

Kampala (Nansana-Masitoowa); Iganga; Namutumba; Mbale, Badaka; Bukedea; Lira, Mbarara; Masindi.