GAYAZA HIGHN SCHOOL

S.2 MATH WORKSHEET NINE

NUMBER BASES

Summary:

- 1. Number bases are different ways of writing down numbers.
- 2. The most common base system is base 10.
- 3. The digits of a number in any base are less than the base itself
- 4. The digits 10 and 11 are represented by t and e respectively in number bases

NOTE:

- (i) Base 10 is called decimal base
- (ii) Base 2 is called binary base
- (iii) Base 3 is called trinary base
- (iv) Base 8 is called octal base

EXAMPLES:

- 1. Convert the following to base ten
- (i) 1011_{two}

(ii)
$$312 \cdot 21_{four} = (3 \times 4^{2}) + (1 \times 4^{1}) + (2 \times 4^{0}) + (2 \times 4^{-1}) + (1 \times 4^{-2})$$

$$= (3 \times 16) + (1 \times 4) + (2 \times 1) + (2 \times \frac{1}{4}) + (2 \times \frac{1}{16})$$

$$= 54 + \frac{1}{2} + \frac{1}{16}$$

$$= 54 \frac{9}{16 \text{ ten}} \quad \text{or} \quad 54 \cdot 5625_{ten}$$

Question.1: Covert the following to base ten

	1.	346 _{seven}
	2.	²²¹⁰ three
	3.	530 · 12 _{six}
	4.	6205 · 45 seven
1		

CONVERTING FROM BASE TEN TO OTHER BASES

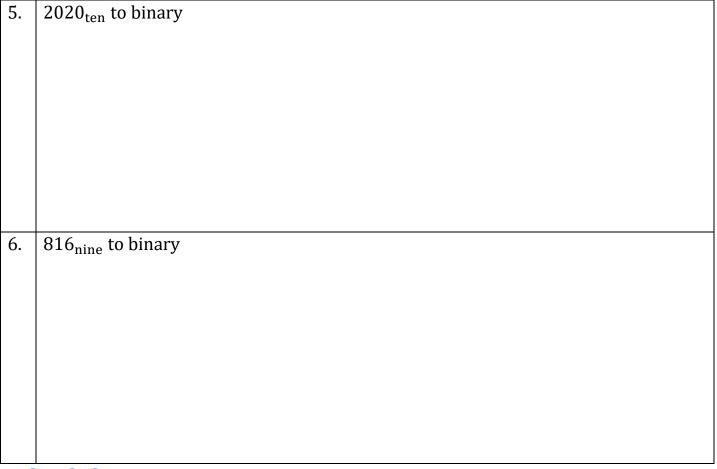
Summary:

- (i) Divide the number repeatedly by the required bases
- (ii) The remainder in reverse order gives the required number

EXAMPLES:

1. Convert 64_{ten} to base three

	3	64	R	
	3	21	1	
	3	7	0	<i>†</i>
		2 _	1	
∴ 64 _{te}	n = 1	2101_{thr}	ee	


- **2.** Convert 246_{ten} to base five
- **3.** Convert 2101_{three} to base seven

Hint: First convert 2101_{three} to base ten

$$\therefore 2101_{three} = 121_{seven}$$

Question.2 Convert the following as required

2.	864 _{eight} to base ten
3.	361 _{seven} to base four
4.	1001001001 _{two} to base six

Finding the base

When finding the unknown base, express everything as base ten and then solve

Example

1. Find the value of n from, $4001_n = 501_{ten}$

$$(4 \times n^{3}) + (0 \times n^{2}) + (0 \times n^{1}) + (1 \times n^{0}) = 501$$

$$4n^{3} + 1 = 501$$

$$4n^{3} = 500$$

$$n^{3} = 125$$

$$n = \sqrt[3]{125} = 5$$

$$\therefore \mathbf{n} = \mathbf{five}$$

2. Find the value of n from, $201_n = 53_{six}$

$$(2 \times n^2) + (0 \times n^1) + (1 \times n^0) = (5 \times 6^1) + (3 \times 6^0)$$

$$2n^{2} + 1 = 30 + 3$$

$$2n^{2} = 32$$

$$n^{2} = 16$$

$$n = \sqrt{16} = 4$$

$$\therefore \mathbf{n} = \mathbf{four}$$

Question: Find the value of **n** in the following equations:

1.	$45_n = 1112_{three}$		

$$2. \quad 21_n = 19_{ten}$$

$$3. \quad 303_n = 410_{six}$$

$\boxed{4. 202_n = 37_{nine}}$

5.
$$112_n + 304_n = 421_n$$