OUR LADY OF GOOD COUNSEL SSS GAYAZA S3 MATHEMATICS TERM 1 2020 HOME WORK

Answer all questions in section A and any two in section B

SECTION A

- 1. Simplify the following expressions:
 - (a) $\sqrt{12} + \sqrt{128} \sqrt{98} + \sqrt{27} \sqrt{36}$
 - (b) $\sqrt{5} \times \sqrt{a}$
- 2. Solve the following simultaneous equations using matrix methods: 2x + 3y = 7 x + 2y = 3
- 3. A farmer has enough feed for 18 cows for 30 days. For how long will it last if she buys 2 more cows?
- 4. A point T on a line segment AB is such that 2TB = AT. If $AT = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$, Find:
 - (a) column vector \mathbf{AB} .
 - (b) the length of AB.
- 5. Given the mapping $x \to 4x + 5$, find the domain when the range is $\{-3, 27\}$
- 6. Two sets A and B in the universal set \mathcal{E} , are such that $n(A \cap B) = 3$, n(B) = 5 and $n(A^1) = 7$. Use a Venn diagram to find $n(AUB)^1$.
- 7. The lengths of 6 trousers in centimeters are 90, 115, 98, 103, 105 and 98. Find the:
 - (a) modal length.
 - (b) Median length.
- 8. Ann plays two games of table-tennis against Betty. If the probability of Ann beating Betty in any one game of table tennis is $\frac{4}{5}$, what is the probability of Betty:
 - (a) winning both the games
 - (b) winning the first game and losing the second one?
- 9. Calculate by how much the compound interest exceeds the simple interest on Ugx. 700000 for 2 years at 12% p.a.
- 10. Given that $\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} = a + \sqrt{b}$, find the values of a and b.

SECTION B

Answer only two questions from this section.

- 11. Awino has 3 blue sweets and 2 pink sweets in her pocket. She takes one sweet at random and eats it. She takes another sweet and eats it too. What is the probability that:
 - (a) the first sweet is blue?
 - (b) The first sweet is blue and the second sweet is pink?
 - (c) The second sweet is pink?
- 12. The table below represents the times (in seconds) recorded by students in the heats of 100m race during inter-house athletics competition.

- (a) Draw a frequency distribution table for the data starting with the class 11.0 11.4.
- (b) State the; (i) class-interval. (ii) Modal-class.
- (c) Using 13.3 as the working mean, estimate the mean time.
- (d) Construct the cumulative frequency curve and use it to estimate the median mark.
- 13.(a) Given the matrices:

$$\mathbf{B} = \begin{pmatrix} 2 & 8 \\ 16 & -4 \end{pmatrix}$$
 and $\mathbf{C} = \begin{pmatrix} 6 & -4 \\ -12 & 8 \end{pmatrix}$ find the inverse of the matrix $(\mathbf{B} - \mathbf{C})$

(b) Nakuya sells dresses of sizes Small (S), Medium(M) and Extra Large(XL). The table below shows her sales for 3 days.

SIZE	Day		
	Mon	Tue	Wed
S	2	2	1
M	7	4	1
XL	3	5	3

She sells each dress at Shs.40000 for Small, Shs.50000 for Medium and Shs 60000 for Extra Large.

- (i) Write down a:
 - -3×3 matrix for the sales.
 - -1×3 matrix for the prices of the dresses
- (ii) Use the matrices to calculate her total income from the dresses.
 - (a) Per day.
 - (b) For the three days.

THE END