NAME	STREAM
	RWENZORI CHRISTIAN VOCATION S.S
	E.O.T OF TERM II 2019
	S.3 CHEMISTRY PAPER 2
	TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- Section A consists of 10 structured questions. Answer all questions in this Section.
- Answers to these questions must be written in the spaces provided <u>only</u>.
- Section **B** consists of 4 semi-structured questions.
- Answer **ONE** questions from this Section. Where necessary use;

(H = 1; C = 12; S = 32; Cu = 64; Fe = 56; Pb = 207)

1 mole of gas occupies 24/at room temperature

1 mole of a gas occupies 22.4/at s.t.p

SECTION A (50 MARKS)

1. The following table gives information about six substances.

Substance	Melting point	Boiling point	Electrical	Electrical
	/°C	/°C	conductivity as	conductivity as
			a solid	a liquid
Α	839	1484	Good	Good
В	-188	-42	Poor	Poor
С	776	1497	Poor	Good
D	-117	78	Poor	Poor
Е	1607	2227	Poor	Poor
F	-5	102	Poor	Good

	substance could be				(1 mark)	
(b) State all	the substances th	at are liquids at ro	om temperature		(1 mark)	
(c) Which s Oxide?	substance could h	ave a giant molec	ular structure similar	to that	of silicon ((IV)
• • • • • • • • • • • • • • • • • • • •				•••••		

(d) Which substance could be propane? (1 mark)					
(e) Which	(1 mark)				
	ble gives the composit	ion of three particles.			
Particle	rticle Number of Protons Number of Electrons Number of neutrons		5		
Α	15	15	16		
В	15	18	16		
С	15	15	17		
(a) What	is the evidence in the	table for each of the fo	llowing?		
(i) Particle	e A is an atom.			(1 mark)	
(ii) A , B a	nd C are all particles o			(1 mark)	
(iii) Partic	(iii) Particles A and C are isotopes of the same element. (1 mark)				
(b) i) What is the electronic configuration of particle A? (1 mark)					
(ii) Is element A , a metal or a non-metal? Give a reason for your choice. (1 mark)					
2a)i) Name one substance which can react with ammonium sulphate to produce ammonia					
in the laboratory. $(\frac{1}{2}\text{mark})$				$(\frac{1}{2}$ mark)	
(ii) Write	an Ionic equation fo	r the reaction leading t	to the formation of a		
the named substance in a(i) $(1\frac{1}{2} \text{ marks}).$				$(1\frac{1}{2} \text{ marks}).$	
	(b) Ammonia can react with lead (II) oxide to produce lead according to the following equation.				

$3PbO(s) + 2NH_3(g) \longrightarrow 3Pb(s) + N_2(g) + 3H_2O(1)$ State;	
(i) the condition(s) under which the reaction takes place .	(1 mark)
(ii) the property of ammonia shown in the reaction.	$(1\frac{1}{2} \text{ mark})$
(c) 3.1g of lead was obtained when ammonia reacted with lead (II) oxide maximum volume of ammonia, measured at s.t.pthat reacted with le produce the given mass of lead.	
	(2 marks)
3. At room temperature, magnesium ribbon reacts with dilute hydrochloric to the following equation.	
$Mg(s) + 2H^{+}(aq) \longrightarrow Mg^{2+}(aq) + H_{2}(g)$	
(a) State three ways by which the formation of hydrogen can be faster.	(3 marks)
(b) Sketch a well labeled graph showing the variation of disappearance ribbon with time.	of magnesium (1 mark)
	•••••
(c) Write equation for the reaction that would take place if dry hydrogen w	as passed over
heated copper (II) oxide.	$(1\frac{1}{2})$ mark)

	•••••
4(a) Polyethene is synthetic polymer prepared from ethene	
(i) Write equation to show how polyetheneis formed ethene.	(1 mark)
(ii) State one use of Polyethene.	$(\frac{1}{2}$ mark)
(iii) Name the substance that can be used to prepare ethene and state co	
reaction.	$(1\frac{1}{2} \text{ mark})$
Substance:	
conditions:	•••••
(b) Give any one example of:	•••••
(i) A natural polymer.	(1 mark)
(i) A natural polymer.	2
(ii) one synthetic polymer	(1 mark)
	2
(c) Define the term thermosoftening plastics.	(1 mark)
	• • • • • • • • • • • • • • • • • • • •
5(a) Name a gas:	
(i) X , which is produced when carbon is burnt in a limited amount of oxyg	gen.(1 mark)
(ii) Y, which produced when steam is passed over heated magnesium.	(1 mark)
(b) Write equation to illustrate the reaction in (a)(ii).	$(1\frac{1}{2} \text{ mark})$
(c) State two chemical properties, which show similarities between X and	Y . $(1\frac{1}{2} \text{ mark})$

(d) \mathbf{Y} reacts with nitrogen in the presence of catalyst to form gas \mathbf{Z} on large	e scale. Identify
Z and the catalyst used.	(1 mark)
Z is:	
Catalyst is:	
6. A hydrocarbon Y contains 85.7% carbon.	
(a) Calculate the simplest formula of Y	(2 marks)
	,
(b) 0.224g of Y occupied 96cm ³ at room temperature.	
(i) Calculate its molecular mass and hence its molecular formula.	(2 marks)
(ii) State the homologous series to which Y belongs.	(1 mark)
(iii) Write down one structural formula of Y.	(_ mark)
7 \ D G \ 1 \ 1 \ (1 \ 1)	•••••
7. a) Define hard water. (1mark)	
b) i) State the two types of hardness of water (1mark)	•••••••••
ii) State the causes of hardness mentioned in b (i). (1mark)	

ii) State 2 me	thods of re	 moving ha	rdness of w	vater from	river Nyar	 mwamba.	(2marks)
······							
8. A section of do not corres	•					symbols i	n the table
1	. 11	111	IV	· v	VI	VII	VIII
Α							В
				C		D	
	Е						
	L		F				
i) ii) b) (i) W	L rite the form the elemen h of the ele basic	mula of the	e compoun	d betweer largest ma	n elements ass number (1mark)	L and D. (12mark)
9. Carbon did (a) (i)	State:-		d in the labo	·	om marble	•	2 marks)
(ii) the co	nditions un	der which	marble clip	s can reac	t to form o	arbon dio	xide.

	(b)	from marble clips.	eaction leading to the formation of carbon dioxide (1½ marks)
(c)		equation only to show h	ow carbon dioxide react with magnesium. (1½ marks)
` `	Write	the formulae of the oxid	
.(ii)Al			bond that exists in the oxide of: (2marks)
•	ıminiun	n:	des of the following elements belong:
` •			(0½mark)
(ii)Alu	ıminiun	า:	(0½mark)
		SECT	TON B (30 marks)
		Answer two	o questions in this section.
11(a) (Copper	(II) sulphate solution was	electrolyzed between graphite electrodes
	(a) i	State what was observed Anode	d at the; (1mark)
		i) Cathode	(1mark)
	(b) W	•	eaction that took place at the anode,(1½)
	(ii) p	olour of the solution H of the electrolyte.	(1mark) (1mark)
	Ex	lute copper (II) sulphate s plain the changes on the marks)	olution was electrolyzed using copper electrodes. size of the electrodes.
	e) (i)	What is the significance o	of electroplating? (2marks)
	(ii)	State three conditions ne	cessary for electroplating. (3marks)

- (iii) Apart from silver, state three other metals that are commonly used for electroplating. (2marks)
- 12(a) What is meant by the term water pollution?

(1 mark)

- (b) Name any **four** substances that cause water pollution and explain how the substances pollute the water. (8 marks)
- (c) Suggest any two ways a chemist can control water pollution.

(2 marks)

- (d) State the role of these following substances used during water purification process.
- (i) Alum dosing.
- (ii) Sand and gravel.
- (iii) Chlorine.
- (iv) Soda ash (4 marks)
- 13. a) Describe the structure of graphite (5 marks)
 - b) State two properties in which graphite differs from diamond (2marks)
 - c) State what would be observed if burning magnesium ribbon was lowered into a jar of carbon dioxide (2marks)
 - i) State what was observed (2 marks)
 - ii) Write equation for the reaction that takes place(1½marks)
 - iii) Explain the observation in ci) above (2½marks)

FNIC

By NATUGONZA WISELY KYABOONA

Email: natugonzawisely@gmail.com