
5.3 CHEMISTRY HOLIDAY WORK, JANUARY- 2016

(READ, RESEARCH AND REMEMBER)

- 1. (a) Explain what is meant by the terms
 - (i) 'mass number'
 - (ii) 'atomic number'
 - (b) An atom of an element is represented by the symbol

80X 15

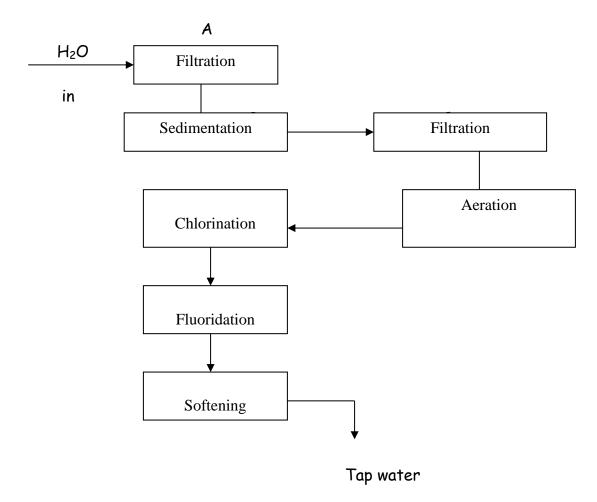
- (i) State the mass number of the atom
- (ii) What is the atomic number of the atom?
- (iii) How many neutrons are present in the atom?
- 2. The positions of the elements A, B, C, D, E and F are shown in the Periodic Table below. These letters are not the usual symbols for the elements.

- (a) State the type of bonding in the compound formed between
 - (i) B and D
 - (ii) E and C
 - (b) (i) Which one of the elements A and B reacts vigorously with cold water?
- (ii) Write equation for the reaction between water and the element you have named in (b) (i).

- (c) From the table select two elements that can oxidize F.
- 3. Part of the Periodic Table indicating the positions of elements W, X, is shown below.

• • • • • • • • •	50.0									
1	I	II	III	IV	٧	VI	VII	VIII		
2										
3 4	W		X				Z			

- (a) (i) Write the formula of the oxide of W.
 - (ii) The oxide of W was dissolved in water.


 State whether the resultant solution is acidic, neutral or alkaline. Explain your answer.
- (b) Write the formula of the compound formed between X and Z.
- (c) Which one of the atoms W, X and Z has the largest atomic radius?
- 4. The number of electrons, protons and neutrons in atoms A, B, C and D are shown in the table below.

Atom	Electrons	Protons	Neutrons
Α	8	8	8
В	16	16	16
С	13	13	14
D	×	3	4

- (a) Determine
 - (i) the value of x
 - (ii) the approximate relative atomic mass of C.
- (b) Write the electronic configurations of the following atoms and ions.
 - (i) A^{2-}
 - (ii) A
 - (i) C
 - (ii) C³⁺

- (c) State two atoms that are of elements in the same group in the periodic table.
- 5. The atomic number of element Q is 13
 - (a) Write the electronic configuration of an atom of Q
 - (b) To which group in the Periodic Table does Q belong?
 - (c) State whether Q would conduct electricity or not.
 - (d) (i) Write the formula of the oxide of Q.
 - (ii) State the type of bonding in the oxide of Q.
- 6. (a) Describe how you would prepare pure crystals of lead (II) nitrate in the laboratory starting from lead (II) oxide. Write an equation for the reaction that takes place.
 - (b) State what happens when lead (II) nitrate is strongly heated.
- 7. (a) Describe briefly how copper (II) sulphate crystals can be prepared from copper(II) oxide. Write an equation for the reaction that takes place.
- 8. Oxygen can be prepared in the laboratory by dropping substance M onto sodium peroxide.
 - a) Name substance M and give its formula.
 - b) Explain why M is put in thistle funnel and not sodium peroxide?
 - c) Give the conditions that are required for the reaction to occur.
 - d) Write the equation for the reaction.
 - e) Name one possible drying agent for oxygen gas
 - f) How will the gas be collected after being dried?
 - g) Describe the chemical test for oxygen gas.
 - h) Give any three uses of oxygen gas.

9. The flow chart below shows the treatment of water in water supply systems.

- (i) Suggest any three substances that can be used in filtration chambers \boldsymbol{A} and \boldsymbol{C} .
 - (ii) Aluminium sulphate (Alum) is used in the sedimentation chamber B. Explain the action of aluminium sulphate.
 - (iii) Explain the importance of aeration
 - (iv) Explain why chlorination is necessary?
 - (v) Explain the importance of fluoridation.
 - (vi) Water pollution which can be a health hazard may be divided into four categories depending on their cause. List them down and briefly state the causes and their remedies.
- 10 (a). Define and give one example of each of the following;
 - I. Water of crystallization
 - II. Efflorescence
 - III. Hydroscopic substance

- IV. Deliquescence
- (b) Explain what would happen if blue Copper II sulphate crystals were left in a desiccators.
- 11. Give the name of a metallic oxide (different in each case) which?
 - (i) On heating yields oxygen and a lower oxide of the same metal.
 - (ii) Is yellow when hot and white when cold.
 - (iii) Is easily converted to a metal on heating.
 - (iv) Does not dissolve in water but a base.
 - (v) Dissolve in water to form an alkali.
- 12. Where is the competition for oxygen reaction applied industrially?
- 13. (a) Name a gas that will reduce copper II Oxide.
 - (b) Describe what you would see when the reaction occurs.
 - (c) Write an equation for the reaction.
 - (d) Will this gas reduce magnesium oxide? Explain your answer
- 14. Below are the main sources of water pollution. Explain how each of them affects the environment?
 - (i) Sewage
 - (ii) Fertilisers
 - (iii) Chemicals/Pesticides
 - (iv) Oil and detergents
- 15 (i) Define an acid.
 - (ii) Define a base.
 - (iii) State how you can determine the strength of acids and alkalis.
 - (iv) Give the names of the following substances specify whether strong or weak.
 - (i) Acids
 - HCl
 - H₂SO₄
 - H₂CO₃
 - HNO₃

(ii) Alkaline solutions

- NH₄OH
- NaOH
- Ca(OH)2
- KOH
- (b) State the uses of the following alkaline solutions.
- Ammonia solution
- Calcium hydroxide
- Magnesium hydroxide
- Sodium hydroxide
- 16(i) What is neutralisation?
 - (ii) Describe one practical importance of acid-base neutralisation
- 17 (i) List three methods used to prepare salts in the laboratory regardless of whether the salts are soluble or insoluble.
 - (ii) What is basicity of an acid?
 - (iii) Define the following terms.
 - (a) Normal salt
 - (b) Acid salt.

END