# **BUDAKA PROGRESSIVE HIGH SCHOOL**

### **END OF TERM II EXAMS 2019**

## S.3 Physics Paper 1

Time: 2 hours 15 minutes

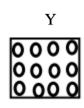
#### **Instructions**

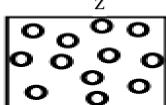
- ❖ Attempt all questions in this paper.
- ❖ Section A has forty objective type questions. Write the correct alternative answer A, B, C or D in the table provided.
- ❖ Section B has ten structured questions. Write the answers in the spaces provided.
- **❖** Assume where necessary;

Acceleration due to gravity, g, = 10ms<sup>-2</sup>

Density of water  $= 1000 \text{kg}^{-3}$ 

## **SECTION A: (40 MARKS)**


Answers to questions in this section are to be written in the table below


| Qn | Answer | Qn | answer | Qn | Answer | Qn | answer |
|----|--------|----|--------|----|--------|----|--------|
| 1  | С      | 11 | D      | 21 | D      | 31 | A      |
| 2  | D      | 12 | С      | 22 | D      | 32 | A      |
| 3  | С      | 13 | D      | 23 | A      | 33 | В      |
| 4  | A      | 14 | D      | 24 | В      | 34 | A      |
| 5  | В      | 15 | D      | 25 | С      | 35 | В      |
| 6  | С      | 16 | В      | 26 | В      | 36 | A      |
| 7  | A      | 17 | A      | 27 | A      | 37 | С      |
| 8  | В      | 18 | В      | 28 | D      | 38 | C      |
| 9  | В      | 19 | В      | 29 | В      | 39 | В      |
| 10 | A      | 20 | С      | 30 | A      | 40 | D      |

| 1.  | Which of the following is best suitable for measuring t                         | he diameter of a wire accurately?             |  |  |
|-----|---------------------------------------------------------------------------------|-----------------------------------------------|--|--|
|     | A. Metre rule                                                                   | C. Micrometer screw gauge                     |  |  |
|     | B. Vernier calipers                                                             | D. Tape measure                               |  |  |
| 2.  | Which one of the following sets consists of only vector quantities?             |                                               |  |  |
|     | A. Momentum, acceleration, mass, time                                           | C. Temperature, force, mass, time             |  |  |
|     | B. Force, momentum, acceleration, current                                       | D. Force, velocity, momentum, acceleration    |  |  |
| 3.  | The process by which electrons are emitted from a hear                          | ted metal surface is called                   |  |  |
|     | A. Photoelectric emission                                                       | C. Thermionic emission                        |  |  |
|     | B. Radioactivity                                                                | D. Rectification                              |  |  |
| 4.  | Which one of the following factors affects pressure in                          | liquids?                                      |  |  |
|     | A. Depth                                                                        | C. Weight of the container                    |  |  |
|     | B. Base area of the container                                                   | D. Shape of the container                     |  |  |
| 5.  | An isotope of a nuclide $_{17}^{35}X$ has                                       |                                               |  |  |
|     | A. 18 protons and 17 neutrons                                                   | C. 17 protons and 20 neutrons                 |  |  |
|     | B. 17 electrons and 18 neutrons                                                 | D. 18 protons and 18 neutrons                 |  |  |
| 6.  | The slope of a velocity -time graph is the                                      |                                               |  |  |
|     | A. Speed of the body                                                            | C. Acceleration of the body                   |  |  |
|     | B. Velocity of the body                                                         | D. Distance travelled by the body             |  |  |
| 7.  | A ray of light travelling from a less dense to a denser r                       | nedium is                                     |  |  |
|     | A. Refracted towards the normal                                                 | C. Always reflected back to the same medium   |  |  |
|     | B. Reflected away from the normal                                               | D. Always transmitted without being reflected |  |  |
| 8.  | A car accelerates from 4.0ms <sup>-1</sup> to 20.0 ms <sup>-1</sup> in 8.0s. Ho | w far does it travel in this time?            |  |  |
|     | A. 32m B. 96m                                                                   | C. 128m D. 160m                               |  |  |
| 9.  | A mass of 500 g produces an extension of 10 cm in a s                           | pring. Find the force that will produce an    |  |  |
|     | extension of 25cm.                                                              |                                               |  |  |
|     | A. 0.5N B. 12.5N                                                                | C. 50.0N D. 200.0N                            |  |  |
| 10. | The image formed in a plane mirror is                                           |                                               |  |  |
|     | (i) The same distance behind as the object is in fro                            | ont                                           |  |  |
|     | (ii) Laterally inverted                                                         |                                               |  |  |
|     | (iii) Magnified and virtual                                                     |                                               |  |  |
|     | A. (i) and (ii) only                                                            | C. (ii) and (iii) only                        |  |  |
|     | B. (i) and (iii) only                                                           | D. (i), (ii) and (iii)                        |  |  |

11. The three states of matter are given below







Which of the following is correct?

|   | X      | Y      | Z      |
|---|--------|--------|--------|
| A | Gas    | Solid  | liquid |
| В | Liquid | Gas    | Solid  |
| С | Gas    | Liquid | Solid  |
| D | Solid  | Liquid | Gas    |

| 12. Light travelling in air is incident o | on a medium at an angle of $60^{\circ}$ . | . Find the refractive index | , if the angle |
|-------------------------------------------|-------------------------------------------|-----------------------------|----------------|
| of refraction is $30^{\circ}$ .           |                                           |                             |                |

A. 0.50

B. 0.58

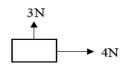
C. 1.73

D. 2.00

- 13. The principle of conservation of energy states that
  - A. Energy is the ability to do work
  - B. Energy is composed of kinetic and potential energy
  - C. Energy will always be converted from one form to another
  - D. Energy cannot be created or destroyed but it can be changed from one form into another.
- 14. Cathode rays are
  - A. Electromagnetic waves.

C. Protons emitted by a hot cathode

B. Stream of x-rays


- D. Streams of electrons moving at high speed
- 15. A current of 6A flows for 2 hours in a circuit. Calculate the quantity of electricity that flows in this time.
  - A. 3 C

B. 12 C

C. 720 C

D. 43200 C

16. Two forces of 3N and 4N act on a block as shown below.



Find the resultant force on the block.

A. 2 N

B. 5 N

C. 1 N

D. 7 N

| 17. A car of mass 5 k    | g accelerates steadily from rest | t to 40 ms <sup>-1</sup> in 10 s. Calculate the | e force that produces this         |  |  |
|--------------------------|----------------------------------|-------------------------------------------------|------------------------------------|--|--|
| acceleration.            |                                  |                                                 |                                    |  |  |
| A. 20.0 N                | B. 5.0N                          | C. 2.0 N                                        | D. 125 N                           |  |  |
| 18. Which one of the     | following is a primary cell?     |                                                 |                                    |  |  |
| A. Lead acid acc         | umulator                         | C. Nickel iron cell                             |                                    |  |  |
| B. Dry cell              |                                  | D. Nickel cadmium                               | cell                               |  |  |
| 19. Find the force tha   | t would give a mass of 400g ar   | n acceleration of 8ms <sup>-2</sup>             |                                    |  |  |
| A. 0.05N                 | B. 3.20N                         | C. 20.00N                                       | D. 50.00N                          |  |  |
| 20. In an elastic collis | sion,                            |                                                 |                                    |  |  |
| A. Bodies move w         | vith a common velocity           | C. Kinetic energy is                            | conserved                          |  |  |
| B. Kinetic energy        | is not conserved                 | D. Bodies stick toget                           | ther                               |  |  |
| 21. The law of electro   | ostatics states that             |                                                 |                                    |  |  |
| A. Charges occur         | in pairs                         | C. Like charges attra                           | C. Like charges attract each other |  |  |
| B. Charges repel         | each other                       | D. Like charges repe                            | D. Like charges repel each other   |  |  |
| 22. Which of the follo   | owing are second class levers?   |                                                 |                                    |  |  |
| A. See saw, whee         | l barrow                         | C. Pair of tongs, nut                           | C. Pair of tongs, nut cracker      |  |  |
| B. Wheel barrow,         | pair of tongs                    | D. Wheel barrow, no                             | D. Wheel barrow, nut cracker       |  |  |
| 23. The product of ma    | ass and velocity of a body is ca | alled                                           |                                    |  |  |
| A. Momentum              |                                  | C. Inertia                                      |                                    |  |  |
| B. Acceleration          |                                  | D. Moment                                       | D. Moment                          |  |  |
| 24. A body of mass 2     | kg is projected vertically upwa  | ards with a velocity of 10ms <sup>-1</sup> . Fi | nd the maximum height              |  |  |
| reached.                 |                                  |                                                 |                                    |  |  |
| A. 0.5 m.                | B. 5.0m.                         | C. 10.0m                                        | D. 50.0m                           |  |  |
| 25. A needle floats or   | n the surface of water because   | of                                              |                                    |  |  |
| A. adhesion              |                                  | C. surface tension                              |                                    |  |  |
| B. viscosity             |                                  | D. capillary attractio                          | n                                  |  |  |
| 26. When does the ec     | lipse of the moon occur?         |                                                 |                                    |  |  |
| A. When the mod          | on is between the sun and earth  | 1.                                              |                                    |  |  |
| B. When the eart         | h is between the sun and the m   | noon.                                           |                                    |  |  |
| C. When the sun          | is totally eclipsed by the moor  | 1.                                              |                                    |  |  |
| D. When a bright         | t ring of sun light shows round  | the age of the moon. A mirage i                 | s formed as a result of            |  |  |
| 27. A hydraulic brake    | e works on a principle of        |                                                 |                                    |  |  |
| A. Transmission          | of pressure in a liquid          | B. High density                                 |                                    |  |  |

| C. Existence of viscosity                              | D. Forcing a pipe                                             |
|--------------------------------------------------------|---------------------------------------------------------------|
| 28. Which of the following are brittle substances?     |                                                               |
| A. Dry clay, Steel, chalk and wood                     | C. Glass, chalk, concrete and steel                           |
| B. Chalk, steel, plastic, and glass                    | D. Dry clay, glass, chalk and concrete                        |
| 29. A ball of mass 1kg bounces off through a height    | of 2m. Find its potential energy                              |
| A. 5J B. 20J                                           | C. 30J D. 50J                                                 |
| 30. Mass, length, and time are,                        |                                                               |
| A. Fundamental quantities                              | C. Derived quantities                                         |
| B. Units of measurement                                | D. Vector quantities                                          |
| 31. The energy possessed by a body due to its motion   | on is                                                         |
| A. Kinetic energy                                      | C. Internal energy                                            |
| B. Potential energy                                    | D. Chemical energy                                            |
| 32. A rectangular block has dimension 1.0m x 1.5m      | x 2.0m. If the density of the block is $3000 \text{kg/m}^3$ . |
| Find its mass in kg.                                   |                                                               |
| A. $9.0 \times 10^3$                                   | C. $9.0 \times 10^{-3}$                                       |
| B. $1.0 \times 10^3$                                   | D. 1.0 X 10 <sup>-3</sup>                                     |
| 33. The unit of force is a                             |                                                               |
| A. Kilogram                                            | C. Meters per second                                          |
| B. Newton                                              | D. Coulombs                                                   |
| 34. Which of the following affects the moment of a     | force?                                                        |
| A. Magnitude of the force                              | C. Shape of the object                                        |
| B. Cross-sectional area of the object                  | D. Nature of the object                                       |
| 35. A force that gives a body of mass 1kg an acceler   | ration of 1ms <sup>-2</sup> is called                         |
| A. weight                                              | C. gravity                                                    |
| B. Newton                                              | D. D. friction                                                |
| 36. Convex mirrors are used as driving mirrors beca    | nuse they                                                     |
| A. Have a wide field of view                           | C. Form real images                                           |
| B. Form magnified images                               | D. Have a narrow field of view                                |
| 37. The rate of change of distance moved in a specific | fied direction is called                                      |
| A. Momentum                                            | C. Velocity                                                   |
| B. Acceleration                                        | D. Displacement                                               |

38. Hooke's law states that

- A. The rate of change of momentum is proportional to the applied force
- B. The current through a metallic conductor is proportional to the potential difference at constant temperature
- C. The extension of a wire is proportional to the force applied if the elastic limit is not exceeded
- D. Volume is proportional to temperature at constant pressure
- 39. Which one of the following statements is true about cathode rays?
  - A. They are positively charged
  - B. They are negatively charged
  - C. They cannot be deflected by both electric and magnetic fields
  - D. They possess both positive and negative charges
- 40. Which of the following are forms of mechanical energy?
  - A. Electrical energy and kinetic energy

C. Nuclear energy and kinetic energy

B. Potential energy and nuclear energy

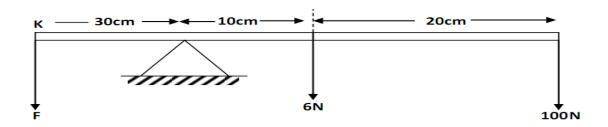
D. Potential energy and kinetic energy

### **SECTION B: (40 MARKS)**

Answer all questions in this section. All working must be clearly shown in the spaces provided

41. (a) State the principle of moments

(01 mark)


It states that when a body is in equilibrium, the sum of the clockwise moments about any point is equal to the sum of anti-clockwise moments about the same point.

(b) State one condition for a body to be in equilibrium

(01 mark)

- The sum of the forces one direction is equal to the sum of forces in the opposite direction.
- ❖ The sum of the clockwise moments about any point is equal to sum of the anti-clockwise moments about the same point
   Any one

(c)



Find the force F if the body is in equilibrium

(02 marks)

Taking moments about the pivot;

Sum of clockwise moments = sum of anti-clockwise moments

$$6 \times \frac{10}{100} + 100 \times \frac{30}{100} = F \times \frac{30}{100}$$

$$F = 102N$$

42. (a) Define work. (01 mark)

Work is a product of force and the distance moved in the direction of the force.

- (b) A body of mass 2kg is acted upon by a force 5N through a distance of 10m. Find the;
  - (i) acceleration of the body

(1.5 marks)

From F = ma,  $a = \frac{F}{m} = \frac{5}{2}$   $a = 2.5 \text{ms}^{-2}$ 

(ii) work done by the force.

(1.5 marks)

Work done = force  $\times$ distance

$$=5\times10$$

Work done = 50J

43. (a) What is meant by the atomic number of an element?

(01 mark)

Atomic number is the number of protons in the nucleus of an atom of an element.

(b) One isotope of neon is denoted by  ${}_{10}^{20}Ne$ . How many neutrons does the isotope have? (01 mark)

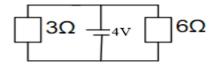
Number of neutrons = atomic mass – atomic number

$$= 20 - 10$$

Number of neutrons = 10

(c) A radioactive isotope X with atomic mass 35 and atomic number 17 decays by emission of an alpha particle and gamma rays to from Y. Write a balanced equation for the nuclear equation. (02 marks)

$$^{35}_{17}X \longrightarrow ^{31}_{15}Y + ^{4}_{2}He + \gamma$$


44. (a) State ohm's law

(01 mark)

It states that the current through a metallic conductor is directly proportional to the potential difference across its ends provided temperature and other physical conditions are kept constant.

Mark a candidate who uses 'wire' in stead of metallic conductor

(b) Two resistors of resistances  $3\Omega$  and  $6\Omega$  are connected across a battery of e.m.f 4V and negligible internal resistance as shown in the figure below



Find the;

(i) Combined resistance

(1.5 marks)

Since the resistors are in parallel,

$$R = \frac{3 \times 6}{3 + 6}$$

$$R = 2\Omega$$

(ii) Current supplied by the battery

(1.5 marks)

From E = I(R + r)

Deduct 0.5 marks if a candidate uses V = IR because the cell has

$$4 = I(2 + 0)$$

internal resistance, r, which must appear in the formula

$$I = 2A$$

45. (a) What is meant by the term momentum?

(01 mark)

Momentum is the product of mass of a body and its velocity. But not 'product of mass and its velocity'

(b) A car starts from rest and acquire a velocity of 60ms<sup>-1</sup> in 30s.

Find the acceleration of the car

**(03 marks)** 

u = 0 (since the car started from rest)

from 
$$v = u + at$$
,

$$v = 60 \text{ms}^{-1}$$

$$60 = 0 + a \times 30$$

$$t = 30s$$

$$a = 2ms^{-2}$$

46. (a) State the law of conservation of energy

(01 mark)

It states the energy is neither created nor destroyed but changes from one form to another.

- (b) A block of mass 2kg falls freely from rest through a height of 20cm above the ground. Find;
  - (i) The potential energy of the block above the ground

**(1.5 marks)** 

m = 2kg

Potential energy = mgh

u = 0 (falls from rest)

$$= 2 \times 10 \times 0.2$$

$$h = 20cm = 0.2m$$

Potential energy = 
$$4J$$

$$g = 10 \text{ms}^{-2}$$

(ii) The velocity with which the block hits the ground

(1.5 marks)

From the principle of conservation of energy;

Loss in potential energy = gain in kinetic energy

Therefore, kinetic energy = 4J

But kinetic energy =  $\frac{1}{2}$  mv<sup>2</sup>

$$4 = \frac{1}{2} \times 2 \times v^2$$

$$v = 2ms^{-1}$$

47. (a) What is power?

(01 mark)

Power is the rate of transfer of energy

Or power is the rate of doing work.

(b) A boy whose mass is 60kg can run up a flight of 28 steps each 25cm in 55 seconds. Calculate the power he develops. **(03 marks)** 

Total distance moved =  $(28 \times 25)$ cm

$$= 700 \text{cm} = 7 \text{m}$$

$$F = 60 \times 10 = 600N$$

$$t = 55s$$

Work done = 
$$600 \times 7 = 4200 \text{J}$$

$$m = 60kg$$

$$Power = \frac{4200}{55}$$

Power = 
$$\frac{work\ done}{time\ taken}$$

Power developed = 
$$76.4W$$

But work done = force  $\times$  distance

48. (a) Define the term pressure.

(01 mark)

Pressure is the force acting normally per unit area

Or pressure is the force acting normally per square metre of the surface.

- (b) The dimension of a cuboid is 5cm×10cm×20cm and weight of a cuboid is 60N. Calculate
  - (i) Maximum pressure it exerts

(1.5 marks)

Maximum pressure =  $\frac{force}{minimum\ area}$ 

Minimum area = 
$$\frac{5}{100} \times \frac{10}{100} = 0.005 \text{m}^2$$

Maximum pressure = 
$$\frac{60}{0.005}$$

= 12000Pa

(ii) Minimum pressure it exerts.

**(1.5 marks)** 

Minimum pressure = 
$$\frac{force}{maximum area}$$

Maximum area = 
$$\frac{20}{100} \times \frac{10}{100} = 0.02 \text{m}^2$$

Minimum pressure = 
$$\frac{60}{0.02}$$

= 3000Pa

49. (a) Differentiate between vector and scalar quantities

**(02 marks)** 

Vector quantities are quantities that have both magnitude and direction whereas scalar quantities are quantities that have only magnitude

- Give two examples of;
  - (i) Vector quantities

(01 mark)

- ❖ Momentum, velocity, acceleration, weight, force
  - Any two (ii) Scalar quantities (01 mark)
- \* Mars, time, temperature, area, volume, density Any two
- 50. (a) What is meant by focal length of a concave mirror?

(01 mark)

This is the distance between the principal focus and the pole of the mirror

(b) An object of height 3cm is placed 20cm in front of a concave mirror of focal length 10cm. Find the position of the image and the magnification produced. **(03 marks)** 

 $h_0 = 3cm$ 

u = 20cm

f = 10cm

from 
$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$
,

$$\frac{1}{10} = \frac{1}{20} + \frac{1}{v}$$

$$\frac{v = 20 \text{cm}}{\text{magnification, m}} = \frac{v}{u} = \frac{20}{20}$$

**END**