
COMPUTER SOFTWARE/COMPUTER
INTELLIGENCE

• Computer software refers to sets electronic
instructions, commands or programs which
direct the computer on the capture, processing,
storage and outputting of information.

• Software defines a computers intelligence –
what a computer can do or used for. Computers
work on programmed instructions as provided by
the programmer/software engineer. Hence
computers having artificial intelligence.

1

Differences between computer
hardware and computer software
Computer Hardware
• It is physical/tangible

• Hardware defines a
computers presence

Computer Software
• It is intangible. They are

internal instructions that
tell computers to do
whatever they do

• They define performance of
a computer.

• Software has got power

2

Categories of Software

Computer software is classified basing on;
the element of the computer system that
directly uses it. Elements of the computer
system include:- users, hardware, software and
procedures.
Hence;
1. Application software
2. System software.

3

Application software

• All softwares a computer user directly
interacts with to do work on and with the
computer. It is user dependent.

• Application software takes two forms. That is;
• Customized or in-house or tailor made or user

application or Bespoke application software.
• Packaged/off-the-shelve /standardized application

software

4

Customized or in-house or tailor made or
user application or Bespoke software

• Refers to all softwares designed to be used by
one organisation

• Customized software can be in form of;
• Vertical customized application software – i.e. if

it is used in one department or section of the
organisation.

• Horizontal customized application software –
i.e. if it can be used in several or other departments
and sections of the company.

5

An evaluation of customized softwares
Advantages of customized apps

• Hard to manipulate.
• Makes the organisation

using it look unique.
Improve image.

• Customized softwares
applications offer very high
productivity.

• Usually caters for all
organizational needs by
providing for all the
necessary details.

Disadvantages of customized apps

• Usually very expensive to
design and develop. All
production costs are met by
one organisation.

• They are not flexible. Since they
can only be used by one
company.

• They take long time to develop.
• They need a lot of specialized

skills to use since they are not
very common.

6

Packaged/off-the-shelves /Standardized
application software

These are copyrighted and commercial softwares
designed to meet software needs of a wide
variety of users.
Packaged softwares can be;
• Generalized packaged apps – if they can be

used for many tasks like some word processors
• Specialized packaged apps: if they handle tasks

of a specialized nature like accounting and
marketing apps.

7

Advantages of off-the-shelve software
• They are always available in software kiosks.
• They are cheap to procure.
• They are very flexible since they can be used

by any organization.
• They are the core of entertainment and

leisure application programs.
• Do not need a lot of specialized skills.
• They form the majority of educational

reference software.
8

Disadvantages of off-the-shelve software

• They are very easy to manipulate since they
are almost known by many people

• They are not very secure.
• May not handle some problem with ease. May

not provide the necessary software needs
breadth and depth.

9

Software acquisition

• Softwares are generally distributed through;
• Software writers retail outlets in major cities

around the world,
• Software writers agents
• Software writers certified firms.
• Application service providers (ASP): Third

party organizations that manage and
distribute software and other computer
services online (through the WWW).

10

Other forms of software and concepts
• A Cross-platform application: Any software that runs

identically on multiple operating systems. Different
platforms like Windows, Linux and Mac

• Copyrighted software: Authentic software with
copyright owners or true software writer.

• Pirated software: Stolen software without copyright
restrictions. It is typical of tampered security features.

• Freeware. This is copyrighted software provided at no
cost for users. Usually provided by government
agencies and other donors.

• Shareware. Is copyrighted software that is distributed
for free during its trial period, but payment is required
for its continued usage beyond the trial period.

11

Other forms of software and concepts
• Public Domain software. This is free software

donated for public use and has no copyrighted
restrictions.

• Software suite: A collection of applications with
common basic interface features sold as a single
unit e.g. Microsoft Office and Lotus SmartSuite.

• Software version: A major upgrade in a software
product – Office 2003 and Office 2007.

• Software release: A minor upgrade in a software
product – Office 2007 and Office 2010.

• Software perch: Updates provided by the
software writer periodically.

12

General Common types of application
software

Word Processing software
Spread sheet software
Database software
Presentation software
Integrated software
Computer aided design
software
Desktop publishing software
Project management
software – Ms. Project
Personal information
managers

Video and Audio editing
software
Multimedia authorizing
software
Web page authoring software
Personal finance software
Educational Reference
software
Entertainment software
Communications software
Accounting software
Pointing and Image editing
software 13

SYSTEM SOFTWARE
These are programs or softwares a computer uses
to manage itself. System softwares provide control,
coordination, planning and reporting of system
activities.
System softwares are to the computer system as
application softwares are to the computer user.
They include;

• The operating system
• Utility or service programs
• Programming tools
• System drivers
• Firmware

14

The Operating System

• Is a master control program that manages the general
operations and resources of the computer system. For
example;

• Android
• Windows family OS like Windows XP, 7, 8, 10,

(Windows Millennium)Me, 2000, NT, 95, 3.1, 98, etc
• Mac
• Linux
• Unix
• Disc Operating system (DOS)
• Wang

15

Classifications of OS

1. Multi–tasking OS: This allows many tasks to
be handled by a single CPU system at the a
time. Multi-tasking Operating Systems are
multi-processing and multi-user Operating
Systems

2. Single user OS: These are operating systems
that allow only one activity in the CPU at a
time.

16

Functions of the operating system in
the computer system
1. Manage storage media/allocates memory: They determine

on where data and programs should be placed at the time of
processing and after processing.

2. Management of computer system security: Enable
computer users to create user accounts with passwords.

3. Manages system prompts: They direct or prompt devices
and programs to start work.

4. Facilitate the booting process: Loading the OS into memory
is one of the last processes of the booting process. Without
a working OS the computer cannot boot. Booting is the
process of attaining the operational run-time environment
of the computer system. The booting process can be;

1. Cold/hard booting: Starting the PC when the system has been off.
2. Warm/soft booting: Restarting the PC when the OS is already

running in memory

17

Functions of the OS Cont’d
5. Management of system faults and errors: The OS

keeps on checking on system devices and programs.
Where it finds an error it reports it to the user or
make an effort to fix it. They monitor system
performance and usage.

6. Provide system user interface: The OS provides tools
and mechanisms (interface) through which the user
interacts with the computer. The OS provides;

I. Menu driven interface – where users interact
through lists of options they choose from.

II. Command line interface through command boxes
where commands are punched.

III. Voice recognition interface
IV. Touch and wave interface
V. Remote terminal or controlled interface

18

Functions of the OS Cont’d
VI. Graphical user interface (GUI): The OS

provides interactive dialogue boxes, buttons,
icons, and tabs with which the user can work
with the computer.

Advantages of GUI
• Graphical images are easier to learn and work

with.
• There is no need to type and memorize any hard

command language.
• The interface is similar for any application.
• They make program identification easy. Each

program has got a unique graphical image

19

Functions of the OS Cont’d

VI. Device configuration. The OS initiates or
aligns devices such that they interact well
with the entire computer system.
Configuration also refers to the alignment or
arrangement of the functional part of the
computer system.

VII.They provide a platform or foundation into
which application programs run.

20

Functions of the OS Cont’d

Disadvantages of GUI
• Graphical images require faster memory and faster

processor because they generally heavy.
• It also occupies more disk space to hold all files for

different functions.
• It is difficult to automate functions for expert users.

21

SYSTEM UTILITIES
• A utility program is a form of system software

that services other programs and system
devices, enhance system performance or
make the computer system more user friendly
and cost effective.

• They are also called Service programs.
• Some utility programs come embedded in

operating systems, while others can be bought
independently or down loaded online.

22

Classifications of utility programs.
Popular categories and types of utility programs
include:
1. File management utilities like;

– File sort utilities: rearranges files in either descending
or ascending order of date, type, name or size.

– File viewer: Copies and enables files to be copied and
viewed.

– File compression utility. Reduces or compresses the
size of a file for more storage space & faster
movement on a network.

– Diagnostic utility. compiles technical report about
programs and devices

23

1. File management utilities like Cont’d;
– Backup utility: Enables computer users to create

extra copies of the same file for reference purposes
– Un installer: enables users to remove no-longer

useful or contaminated programs.
– Text editors: Enables creation and editing of text

based files using basic text formatting features. They
do not work with graphics or images.

– Recycle bin: Contains/holds deleted files and folders
– Disc cleanup: Enables the user to clear unwanted

files and folders.

24

Classifications of utility programs cont’d
2. Malware/duty data management utilities

– Antivirus utility: They detect, prevent and remove viruses
from a computer memory or storage media.

– Anti-spyware utilities: Prevent system activities from
being spied on by third parties.

3. Software and device optimizers or enhancement utilities
– Language translators like compilers and interpreters
– Disk defragmenter: reorganizes files and also ensure that

bad disc sectors and files are isolated for enhanced
performance.

– System restore: It restores the system to a known
previous state that worked well.

– Calculators and Calendar utilities
25

Classifications of utility programs cont’d
4. Device maintenance utilities

– Scanner Disk: It check system disks or storage
media for faults/errors and attempts fixing them
where possible. They identify and correct storage
media (hard disk) physical and logical errors

– Screen saver: It causes the monitor/screen to
display a moving image or blank screen if no
keyboard or mouse activity occurs for a specified
time period.

26

Programming tools

Definitions
Programming tools are sets of system programs
used to create other programs. They include;

• Programming languages
• Language translators (like interpreters, compilers

and assemblers)
• Debugging utilities
• Linkers

Programming language. They are platforms or system programs
used to create other programs or softwares

27

NB:
Some programming languages are sold
separately from other programming tools,
while others are sold as a package
consolidated into one pack called an
Integrated Development Environment
(IDE)

28

Classifications of programming languages
• Low level: They are programming platforms where

programmer use data binary codes or specific
abbreviations when developing programs or software.

oMachine language or 1st generation languages
o Assembly languages or second generation

languages
• High level languages: They are programming

platforms where programmers use natural words,
statements and objects in the program development
process. E.g. C, C++, Pascal, Fortran, BASIC, Java, Lisp,
Smalltalk.

29

High level languages:

(i) BASIC (Beginning All purpose symbolic
Instruction Code). This was developed in
1964 by John Kemeny and Thomas Kutz to
teach students how to use computers.

(ii) FORTRAN. (FORmula TRANslation). This was
developed in 1956 to provide an easier way
of writing scientific and engineering
applications

30

High level languages:
(iii) COBOL (Common Business Oriented

Language). Developed for developing business
application programs

(iv) PASCAL. Was developed in early 1970
specifically for computer scientists.

Others:
• ADA
• ALGOL
• PL/M
• (Programming Language Microcomputer)
• LOGO

31

OBJECT ORIENTED PROGRAMMING
Languages (OOPL)

• OOPL Use objects to represent data and
behavior (like motion). Examples include
Visual Basic (C++)

32

Basic terminologies
• Code: Is a written program text or statement
• Source code:
• Object code: Is program code which is

computer–readable i.e. a source code that has
been translated into machine understandable
language.

• Translator: It is a program or utility that
interprets a program code for the computer to
understand it. It translates an object code into
machine code.

33

Basic programming terms
• Code: Is a written program text or statement a computer

can execute
NB: Computers understand a binary language where each
character (letter, number, shape, light or sound stream)has
got its binary code of 8bits or byte
• Source code: Is a program code in a language a computer

programmer understands.
• Object code: Is program code which is computer–readable.

It is a code in a language which is understandable by the
computer i.e. a source code that has been translated into
machine understandable language.

• Translator: It is a program or utility that interprets
(translates) a program code from high level to low level
language.

34

Program or language translators
Language translators are categorized as;
1. Interpreters: These utilities translate program

code text file or data statement by statement.
2. Compilers: They translate the entire program

code (text file or data) at once.
3. Assembler: An assembler translates a program

written in 2nd generation (assembly) language into
machine language or first generation language

NB: In the process of coding and compilation two types
of errors are committed as explained below;

35

Program errors
1. Syntax errors/procedural errors: These errors

occur as a result of improper use of language rules.
e.g. grammar mistakes , punctuation , improper
naming of the variables

Forms of syntax errors
• Program grammar errors
• Spelling error for instance - writing a keyword with wrong spelling
• Punctuation errors or poor punctuation for example - missing semicolon to

terminate execution of line of code
• Missing Parenthesis e.g. (}) to indicate the start and end of main function.
• Printing the value of variable without declaring it
• Using a function that is not in the included header
• Using wrong case for keywords
• Poor use of space as a character

36

2. Logical errors: These errors are not detectable by
the translator. The program runs but gives a wrong
output.

Error detection methods/approaches
• Dry run/desk check – through the program script
• Error detection utilities – like debugging utilities
• Use of test data – giving the program sample data to

manipulate.

37

Basic terminologies
• Algorithm: Refers to a limited number of logical

steps that a program follows to solve a problem.
Program algorithm can be represented by;

oPseudo code
o Flow chart

• Pseudo code: Refers to a set of statements written in
a natural readable language (like Luganda, English or
Japadhola, Lukiga, etc) but expressing the processing
logic of program. It is a set of statements written in a
readable language (English – like) but expressing the
processing logic of program.

38

Sample Pseudo code: A pseudo code for
adding and averaging two numbers

START
Print “Enter two numbers”
Input x,y
Sum – x+y
Average = sum /2
PRINT sum
PRINT Average
STOP

39

Flow Chart
A flowchart is a diagrammatic representation of a
program’s algorithm

40

Flow chart construction
• When constructing a flow chart we use both

statements and special symbols with specific
meaning

• The symbols are combined with short text
clues which are easily understood by
programmers

41

42

43

A linker
• A program that “pulls” other sub-programs together

in order for a program to work or run as a single unit.
It combines several separate program modules into
one program unit. It helps in resolving internal
differences between the different program modules.

• Linking is a process of joining object code file
to all the other files that make a full
executable program

WINWORD.exe is a linker for Ms. Word
Program.

44

Loader:
A Loader is a programming utility that sets up an
executable program into main memory for execution. It
loads the machine codes into memory.
Loading is the final sage of the compiling / assembly
process.

45

A variable

• A name given to some memory location that
stores values subject to change.

For instance
Int x, y (at the declaration of variables

level)

46

A constant

• Is a fixed value a program may not alter during
execution.

x = 2
y = 5
2 and 5 are constants at the definition of

variables level

47

A function
A function is a group of statements that

together perform a task. They are usually in or
preceded by round brackets

For instance;
int main () – (as the main function)

A statement is a collection of expressions that
usually end with a semi-colon

printf(“David is handsome”);
Getchar();
Return0 ();

48

Program Development Cycle
Software developers go through a number of activities/stages or
processes before coming up with the software we use. The most
common stages are;

1. Problem recognition/Identification
2. Problem definition/Analysis
3. Program design
4. Program coding
5. Program testing and debugging
6. Implementation and maintenance
7. Program Documentation

49

Diagram showing program Development Stages.

50

1. Problem Recognition
• Identify the problem in the environment ….

1. Problems or undesirable situations that prevent an
individual or organization from achieving their purpose

2. Opportunity to improve the current program.

3. A new directive given by the management/Authorities
requiring a change in the status quo

Example: A Student has received his examination papers
from 3 exams in a subject. He is having trouble arriving at his
average grades for the term.

51

2. Problem Definition/Analysis

…Determine or define the likely …

1. Input (Given Data)
2. Processing activities (How?)
3. The expected output (Required Data)

…Write out a requirements report/document

52

3. Program Design
• ..is the actual development of the program’s

processing or problem solving logic called the
algorithm

• Algorithm = a definite number of logical steps that a
program follows in order to solve a problem

• …Result is a Pseudo code / Flow chart

• Monolithic Vs Modular

Monolithic = One large block of code

53

Monolithic Vs Modular Program
Design
In modular programming, each module
performs a specific task. This approach makes a
program flexible, easier to read and carry out
error correction.

54

4. Program Coding
• ..is the actual process of converting a design model

into its equivalent program

• ..is done by typing using particular programming
language application software.

• .. end result is a source program (source code) that can
be translated into machine readable form for the
computer to execute and solve the target problem

55

5. Program Testing/Debugging

• the program is tested in order to detect & correct errors
(debug)

• Logical Errors

… errors that are not detectable by the translator. The
program runs but gives wrong output or halts during
execution.

56

6. Implementation and Maintenance
• Implementation = actual delivery and

installation of the new program ready for use
• Review and maintenance = is important

because of the errors that may be encountered
after the program has been implemented or
exposed to extensive use

++ A program may also fail not because of poor development but
also due to poor use
- Proper training
- Post implementation support of users

57

7. Program Documentation
• Writing down formal support materials

• Internal Vs external documentation

1. User oriented = how to use the program

2. Operator Oriented = How to install and maintain program

3. Programmer orientated = for skilled programmers for future
modification

58

Qualities of a good programming
language

 Suitability of the problem.
 Clarity and simplicity.
 Efficiency – well organized and detailed enough
 Availability
 Consistency – stable and reliable

 Economy – it must fit in the budget

59

Considerations when buying a
programming platform/language
• Cost
• Nature of program to develop
• Experience
• Availability
• Consistency – stable and reliable

• Compatibility with available hardware and
software

• Source
60

Revision Questions - 1
1. Mention two forms software
2. Name three categories of system software giving an

example in each
3. Give two examples of application programs
4. Distinguish between custom made and off shelf

application packages
5. Distinguish between open source and proprietary

software
6. State three advantages of graphical user interface

over command line interface

61

Revision Questions - 1
7. Differentiate machine language and high level

languages
8. Define a bug in programming
9. Differentiate between program and

programming language
10.Briefly explain of following terms in

programming language.
a) Source code
b) Compiler
c) Assembler
d) Interpreter
e) Linker 62

Revision Questions - 1
11.Explain three qualities of a good programming

language
12.Write computer program code you know using a

programing platform of your choice
13.What is a device driver?
14.State two uses of device drivers to a computer

user?
15.What is a software suite?
16.Give three advantages of buying/using software

suites compared to buying single software
applications. 63

Review Questions for the topic
17. Give one advantage of compiling a program rather than

interpreting it.
18. Outline at least six stages of program development in

their respective order.
19. Highlight two disadvantages of monolithic programs.
20. State two advantages of modular programming.
21. In what stage of the development does program

documentation fall? Justify your answer.
22. Differentiate between a flowchart and pseudocode.
23. What is a program bug?
24. Explain why it is important to test a program before

implementing it.
25. State three characteristics of computer software

64

