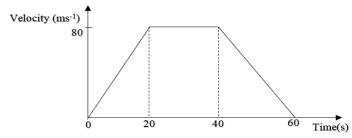
BUDAKA PROGRESSIVE HIGH SCHOOL

MID-TERM I EXAMS 2019

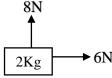
2 HOURS

S.3 Physics paper 2

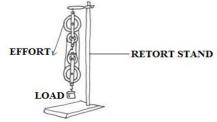
TIME:


Instructions:

Attempt any five questions in this paper.


Use the following where necessary:

Acceleration due to gravity = 10ms⁻²
Density of water = 1000kgm⁻³


- I. (a) State Newton's laws of motion.
 - (b) The figure below shows a velocity time graph for a vehicle in motion.

- (i) Find the total distance the vehicle moved.
- (ii) Calculate the retardation of the vehicle.
- 2. (a) Define the terms a joule and impulse.
 - (b) (i) Distinguish between elastic and inelastic collision as applied to linear momentum
 - (ii) What is meant by linear momentum?
 - (iii) Give the factors on which the momentum of a body depends.
 - (iv) State the law of conservation of linear momentum.
 - (c) A bullet of mass 20g is fired into a block of wood of mass 400g lying on a smooth horizontal surface. If the bullet and the wood move together with speed of 20ms-1. Calculate:
 - (i) The speed with which the bullet hits the wood.
 - (ii) The kinetic energy lost.
- 3. (a) (i) State the laws of reflection.
 - (ii) With the aid of a labeled diagram, distinguish between regular and diffuse reflections.
 - (b) Define the following terms as applied to curved mirrors: -
 - (i) Centre of curvature
 - (ii) Principal axis.
 - (c) An object of height 5cm is placed 15cm in front of a concave mirror of focal length 10cm, by drawing, find the;
 - (i) Image distance from the mirror.
 - (ii) Height of the image
 - (d) (i) draw ray diagrams to show how regular and diffuse reflections are produced.
 - (ii) State the characteristics of images formed in plane mirror.
- 4. (a) (i) Define acceleration.
 - (ii) The figure below shows a mass of 2kg acted upon by two forces of 8N and 6N as shown. Calculate the resultant force and acceleration of the body if the force at right angles.

- (b) (i) Sate the law of conservation of energy.
- (ii) A stone of mass 0.2 kg is thrown vertically upwards attaining maximum potential energy of 16 J. Calculate its initial velocity.
- (c). Distinguish between mass and weight and state the SI units of each of them.
- (d) (i) What is meant by the terms scalar and vector quantities? Give two examples of each.
- (ii) State the conditions under which a body is said to be in mechanical equilibrium.
- (iii) Two forces of 80N and 60N act on a body of mass 10kg. Find the resultant force; hence find the acceleration of the body.
- (e) Differentiate between potential energy and kinetic energy.
- 5. (a) (i) What is meant by the terms mechanical advantage and efficiency as applied to simple machines.
 - (ii) Give two reasons why the efficiency of any practical machine is always less than 100%.
 - (iii) Give two ways of improving the efficiency of a pulley system
 - (b) The diagram below shows a load of 20N being raised by a pulley system by applying an effort of 10N.

- (i) What is the velocity ratio of the system?
- (ii) Calculate the efficiency of the pulley system.
- (iii) If the load is raised through 5m, calculate the distance moved by the effort.
- (c) A drop of oil of volume 6.0 x 10-3 cm³ forms a patch of diameter 3.5 cm on a water surface.
- (i) Calculate the diameter of a molecule of the oil.
- (ii) State the two assumptions made.
- 6. State Archimedes' principle.
 - (a) A metal block weighs 25N in air and 20N when fully submerged in water. Find the;
 - (i) Relative density of the metal block.
 - (ii) Density of the metal block.
 - (b) (i) State the law of floatation
 - (ii) Give two applications of the law of floatation
 - (c) (i) What is meant by the term friction?
 - (ii) Give two advantages and two disadvantages of friction
 - (iii) State two ways of reducing friction.
 - (iv) State the laws of friction.
 - (d) (i) Distinguish between static friction and dynamic friction.
- 7. (a) Distinguish between the following a brittle and a ductile material. Give one example of each.
 - (b) (i) What is meant by the term reinforcement of a concrete?
 - (ii) Give two reasons for reinforcing a concrete
 - (c) (i) Define the term pressure and state its SI units.
 - (ii) State two factors affecting pressure in fluids.
 - (b) A rectangular block of mass 30kg measures 3cm by 4cm by 5cm rest on the floor. Calculate;
 - (i) Minimum pressure exerted on the floor.
 - (ii) Maximum pressure exerted on the ground.
 - (c) Describe the operation of a force pump.