545/2

CHEMISTRY

Paper 2

June/July 2022

2 hours

MWALIMU EXAMINATIONS BUREAU

UCE RESOURCE MOCK EXAMINATIONS 2022

CHEMISTRY

Paper 2

2 hours

INSTRUCTIONS TO CANDIDATES:

Section A consists of 10 structured questions. Answer all questions in this

section. Answers to these questions must be written in the spaces provided.

Section \boldsymbol{B} consists of 4 semi- structured questions. Answer any two questions from this section. Answers to the questions \boldsymbol{must} be written in the answer booklet(s) provided.

In both sections all working must be clearly

shown. Where necessary use;

$$[H=1; N=14; O=16; K=39; C=12; Na=23; S=32; Cl=35.5]$$

1 mole of a gas occupies 24l at room

temperature.1 mole of a gas occupies

22.4*l* at s.t.p.

For Examiners' Use Only														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total

SECTION A: (50 MARKS)

Answer all questions in this section

	(a) State	whether the following processes is a chemical change or a physical change.							
	(i)	Heating anhydrous sodium carbonate.	(0½ mark)						
	(ii)	Heating copper(II) hydroxide.	(0½ mark)						
	(iii)	Dissolving sulphur dioxide in water.	(0½ mark)						
	(iv)	Heating anhydrous iron(III) chloride	(0½ mark)						
((b) When	heated, ammonium chloride undergoes sublimation efine the term sublimation .	(01 mark)						
			• • • • • • •						
		rite equation to show the effect of heat on ammonium chloride.							

2.	(a) (i) State the number of neutrons in R.	(0½ mark)
	(ii) Write the electronic configuration of \mathbf{R} .	(01 mark)
	(b) State the group in the Periodic Table to which R belongs.	
3.	(c) (i) Write the formula of the compound that can be formed when R is chlorine.	reacts with (01 mark)
	(ii) State the type of bond that exists in the compound in (c)(i).	
	(d) An atom Z contains 17 neutrons and 15 protons. What word is used relationship between Z and R ?	
	(a) State the conditions under which oxygen can be produced from each	
	following substances. (i) Sodium peroxide.	(0½ mark)
	(ii)Dilute sulphuric acid.	(0½ mark)

(b) write equation to snow now oxygen can be produced from dilute s	nphuric acid	
under the stated conditions in (a)(ii).	(1½ marks)	
	•••••	
(c) A piece of burning magnesium was lowered into a jar of dry oxyge	en.	
(i) State what was observed.	(01 mark)	
(ii) Write equation for the reaction that took place.	(1½ marks)	
	•••••	
	(11/ 1)	
4. (a)Write equation for the reaction between calcium oxide and water.	(1½ marks)	
••••••		
(h) Carbon diavida was hubbled through the solution in (a) for a long t		
(b) Carbon dioxide was bubbled through the solution in (a) for a long t		
(i) State what was observed.	(1½ marks)	
•••••••••••••••••••••••••••••••••••••••	•••••	
(ii) Write the equation(s) for the reaction(s) that took place.	(02 marks)	
(c) To the solution in (a), soap solution was added. State what was ob-	served. (½ mark)	

5.	A compound Q of formula mass 106, contains sodium, 43.40%, carbon, 11.32% and						
	the rest being oxygen.						
	(a) (i) Calculate the empirical formula of \mathbf{Q} .	(1½ marks)					
	(ii) Determine the molecular formula of Q .	(01 mark)					
	(b) To an aqueous solution of \mathbf{Q} was added a solution containing calcium	ions.					
	(i) State what was observed.	(0½ mark)					
	(ii)Write an ionic equation for the reaction that took place.	(1½marks)					
	(c) Dilute nitric acid was added to the mixture formed in (b) above. State observed.	what was (0½ mark)					
		,					
6.	Dilute sodium hydroxide was electrolysed between platinum electrodes.						
	(a) State what was observed at the anode.	(01 mark)					

(b) (1) Name the product formed at the cathode.	(0½ mark)
(ii)Describe the test that can be carried out to identify the p	product at the cathode.
	(01 mark)
(c) Write equation for the reaction between the product named	d in (b)(i) and strongly
heated lead(II) oxide.	(1½marks)
(d) State one large scale use of the product in (b)(i).	(0½ mark)
(a) Write ionic equation for the reaction between potassium h	nydroxide and nitric acid.
	(01 mark)
(b) When 50.0 cm ³ of a 0.5 M potassium hydroxide solution v	was added to an equal
volume of a 0.5 M nitric acid solution in a calorimeter, the	e temperature of the
·	neity of water - 1 cam-3
_	e temperature of the

(c) In another experiment, 50.0 cm ³ of a 0.5 M ammonia solution potassium hydroxide.	was used in place of
(i) State whether the molar heat of neutralisation value obta	ined was less than,
equal to or greater than the value obtained in (b).	$(0\frac{1}{2} \text{ mark})$
(ii) Explain your answer.	(01 mark)
	••••••
The molecular formula of an organic compound is C_2H_4 .	
	••••••
The molecular formula of an organic compound is C_2H_4 .	(01 mark)
The molecular formula of an organic compound is C ₂ H ₄ . (a) Write the structural formula of J .	(01 mark)
The molecular formula of an organic compound is C ₂ H ₄ . (a) Write the structural formula of J .	(01 mark) laboratory.
The molecular formula of an organic compound is C ₂ H ₄ . (a) Write the structural formula of J .	(01 mark)

8.

	named substances in (b)(i).	(1½ marks)
••••		
(iii)	Write equation for the reaction leading to the formation of J .	
(c) Whe	en reacted together, molecules of ${f J}$ can form a polymer.	
(i) 	Name the polymer.	(01 mark)
 (ii)	State one use of the polymer.	(0½ mark)
9. (a)(i) N	ame two substances from which sulphur dioxide can be prepared	d in the
	aboratory.	(01 mark)
(ii)	State the condition(s) under which the reaction takes place.	(0½ mark)
		•••••
(iii)	Write an ionic equation for the reaction leading to the formati dioxide from the substances you have named in (a)(i).	on of sulphur (1½ marks)

(i) State what was observed.	(0½ mark)
(ii) Write equation for the reaction that took place.	(1½ marks)
(iii) State the property sulphur dioxide shows in the reaction in (b)(ii).	(0½ mark)
10.(a) State what would be observed if to an aqueous solution of lead(II) not (i) dilute hydrochloric acid and the mixture warmed.	itrate is added (01 mark)
(ii) dilute sodium hydroxide drop wise until in excess	
(b) Write an ionic equation for the reaction in (a)(i).	(1½ marks)
(c) What can you deduce from your observation in (a)(i).	(01 mark)

SECTION B: (30 MARKS)

Answer any **two** questions from this section.

Additional question(s) answered will **not** be marked.

11.(a) Using examples, state the difference between a **normal salt** and **acid salt**.

(04 marks)

- (b) (i) Write equation for the reaction that can take place between copper(II) oxide and dilute nitric acid. (1½ marks)
 - (ii) Briefly describe how the dry crystals of the product of the reaction in(b)(i) can be obtained in the laboratory. (3½ marks)
- (c) State what would be observed and write equation for the reaction that would take place if to the solution of the crystals in (b)(ii) were added:
 - (i) zinc powder and mixture allowed to stand. (2½ marks)
 - (ii) a few drops of aqueous ammonia. (2½ marks)
- (d) Briefly explain your observations in (c)(i). (01 mark)
- 12.(a) What is meant by the term **rate of reaction**?

(01 mark)

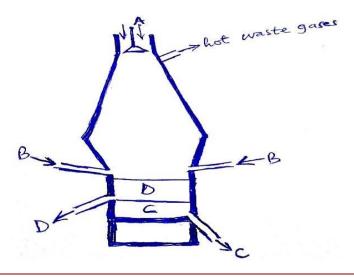
(b) The table below shows the volumes of gas collected at regular time intervals when zinc was added to a mixture of dilute sulphuric acid and few drops of copper(II) sulphate solution.

Time (minutes)	0	5	10	15	20	25	30
Volume of gas (cm ³)	0	10	20	25.5	29.5	32	32

(i) Name the gas that was evolved. $(0\frac{1}{2} \text{ mark})$

(ii) Write an ionic equation for the reaction that took place. (01 mark)

(iii) State the role of copper(II) sulphate solution in the mixture. (0½ mark)


- (iv) Draw a suitable set up of apparatus that was used to collect and determine the volume of the gas evolved. (2½ marks)
- (v) Plot a graph of volume of gas evolved against time. (04 marks)
- (c) Determine the rate of the reaction at:
 - (i) 12 minutes. $(1\frac{1}{2} \text{ marks})$
 - (ii) 20 minutes. $(1\frac{1}{2} \text{ marks})$
- (d) Compare your answers in (c)(i) and (c)(ii). Give a reason for your answer.

(1½ marks)

- 13.(a)(i) Draw a labeled diagram of the setup of apparatus that can be used to prepare ammonia in laboratory from ammonium chloride. (03 marks)
 - (ii) Write equation for the reaction leading to the formation of ammonia.

(1½ marks)

- (iii) State how ammonia can be identified in the laboratory. (01 mark)
- (b) State the condition(s) and write equation(s) to show how ammonia reacts with oxygen. (05 marks)
- (c) Explain the reaction of dry ammonia with copper(II) oxide. (3½ marks)
- (d) State **two** uses of ammonia. (01 mark)
- 14.In the extraction of iron from siderite (spathic iron ore), the ore is roasted and fed into the furnace below to form cast iron.

(a) Writ	e equation for the reaction that occurs during the roasting of siderite.	(1½ marks)					
(b) Nan	the substance(s)						
(i)	added at A .	(1½ marks)					
(ii)	that enters into furnace at B .	(0½ mark)					
(iii)	being removed at C and D.	(01 mark)					
(c) Write equations for the reaction leading to the formation of cast iron in the furnace.							
		(3½ marks)					
(d) State	e the condition(s) and write equation for the reaction between iron and	[
(i)	oxygen.	(03 marks)					
(ii)	chlorine.	(02 marks)					
(e) The	product in (d)(ii) was dissolved in water and to the resultant solution	was added					
dilute ammonia drop wise until in excess.							
(i)	State what was observed.	(01 mark)					
(ii)	Write equation for the reaction that took place.	(1½ marks)					
	END						