NAME	Index No
545/3	
CHEMISTRY	
Paper 3	
June 2022	
2 hours	

MWALIMU EXAMINATIONS BUREAU

UCE RESOURCE PRE-MOCK EXAMINATIONS 2022 CHEMISTRY PRACTICAL

PAPER 3

2 Hours

INSTRUCTIONS TO CANDIDATES

Answer both questions. Answers are to be written in the spaces provided in this booklet. Use blue or black ball point pen only. Any work done in pencil will not be marked except drawings. You are not allowed to use reference books (i.e. text books, Books on qualitative analysis, etc). All working must be clearly shown.

Mathematical tables and silent non-programmable calculators may be used.

For Examiners' Use Only		
Q.1		
Q.2		
Total		

- 1. You are provided with the following:
 - **BA1**, which is sodium thiosulphate solution.
 - **BA2**, which is dilute hydrochloric acid solution.

Sodium thiosulphate reacts with hydrochloric acid to form sulphur, which appears a yellow coloration according to the following.

$$S_2O_{3(aq)}^{2-} + 2H_{(aq)}^+ \longrightarrow S_{(s)} + H_2O_{(l)} + SO_{2(g)}$$

The rate of the reaction above can be followed by noting the time taken for the yellow coloration to appear.

You are required to investigate how the rate of reaction varies with the concentration of sodium thiosulphate.

Procedure

- (a) Mark a small cross (**X**) with a blue/black pen on a sheet of white paper and place it on the table.
- (b) Place a clean conical flask/glass beaker right onto the cross (**X**) on the white sheet of paper.
- (c) Using a clean measuring cylinder, transfer 50.0 cm³ of **BA1** provided into a clean conical flask/glass beaker which is over the cross (**X**).
- (d) Using another clean measuring cylinder, measure 10.0 cm³ of **BA2** and add at **once** to the solution of **BA1** in the conical flask/glass beaker, and **at the same time start the stop clock/watch**.
- (e) Swirl/shake the solution mixture and place the beaker/ flask over the cross (X) as before.
- (f) Look at the cross (**X**) through the solution from above and stop the watch/clock when the cross (**X**) **just** disappears.
- (g) Note and record in the table below, the time, t, in seconds taken for the cross (X) to disappear.
- (h) Pour away the contents in the beaker/flask, and wash it well. (*If necessary you can dry the beaker/flask after washing using the piece of tissue provided*).

- (i) Repeat procedure (b) to (h) but this time varying the volumes of **BA1** used and adding water as shown in the table below.
- (j) Record your results in the table below.

Table of results

Volume of BA1 used (cm ³)	50.0	40.0	30.0	20.0	10.0
Volume of water added (cm ³)	0.0	10.0	20.0	30.0	40.0
Volume of BA2 (cm ³)	10.0	10.0	10.0	10.0	10.0
Time, t (s)					
$\frac{1}{t}(s^{-1})$					

(10Mks)

Questions

•			
(a)	Plot a graph of $\frac{1}{t}$ (along vertical axis) against volume of BA1 used (along horizon	ıtal axis).	
		(06 Mks)	
(b)	Determine the slope of the graph in (a) and indicate the units.	(03 Mks)	
		• • • • • • • • • • • • • • • • • • • •	
(c)	State any conclusion that can be drawn from your graph about the relationship between		
	concentration (volume) of BA1 and the rate of reaction.	(03 Mks)	
		• • • • • • • • • • • • • • • • • • • •	

(d)	(d) Explain the relationship in (c) above.	(03 Mks)
		•••••
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
2.	You are provided with T , which contains two anions and one cation. Carry out the	following
	tests to identify the cations and the anion present in T. Identify any gas(es) that may	y be

evolved. Record your observations and deductions in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Heat a spatula end-full of		
T until there is no further		
change.		
(b) To two spatula end-full		
of T , add about 3 cm ³ of		
water. Shake well and		
filter. Keep both the		
filtrate and the residue.		
(i) To about 1 cm ³ of the		
filtrate, and add 2-3		
drops of lead(II)		
nitrate solution		
followed by excess		
dilute nitric acid.		
(ii) To about 1 cm ³ of the		
filtrate, add 2-3 drops		
of silver nitrate		
followed by excess		
dilute ammonia		

(25 Mks)

solution.	
(c) Wash the residue with	
water and dissolve it in a	
minimum of amount of	
dilute nitric acid.	
Divide the acidic solution	
into <i>four</i> parts.	
(i) To the first part of the	
acidic solution, add	
dilute sodium	
hydroxide solution	
drop wise until in	
excess.	
(ii)To the second part of	
the acidic solution, add	
dilute ammonia	
solution drop wise until	
in excess.	
(iii) To the third part of	
the acidic solution,	
add 3-4 drops of	
sodium chloride	
solution. Heat the	
mixture and allow it	
cool.	
(iv) Use the fourth part of	
the acidic solution, to	
carry out a test of your	
own choice to confirm	
the cation in T .	
Test:	
d) (i) The action in T is	
(ii) The anions in T are	

© Mwalimu Examinations Bureau 2022

End