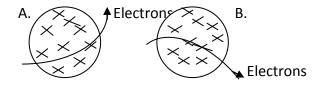
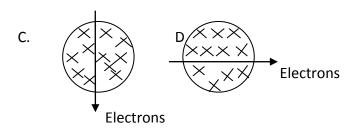
Name	Centre/Index No//
Signature	
UGANDA CERTIFICATE OF EDUCATION	
MOCK EXAMINATIONS 2013	
535/1 PHYSICS	
PAPER 1	
TIME: 2 HOURS 15 MINUTES	

Instructions to candidates

- ❖ Write your name, centre/Index number and signature in the space above
- Section A contains 40 objective type questions. You are required to write the correct answer A,B,C or D in the boxes at the right hand side
- Section B contains 10 structured questions. Answers are to be written in the spaces provided on the question paper.
- Specific heat capacity of water = $4200 \text{Jkg}^{-1} \text{ K}^{-1}$

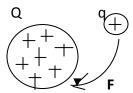

For Examiners use only

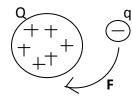

Qn41	Qn42	Qn43	Qn44	Qn45	Qn46	Qn47	Qn48	Qn49	Qn50	MCQ	Total

SECTION A (40 MARKS)

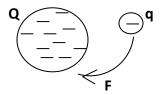
1.	The rate of ch	nange of displaceme	nt is called?	
	Д	. Speed	B. Velocity	
	C	. Acceleration	D. Momentum	
2.	Which one o	f the following facto	r determines heat radiation by a hot body?	
	(i) Temp	erature of the body		
	(ii) Color	of the body		
	(iii) The d	istance from the boo	dy	
	Д	(i) Only.	B. (i) and (iii) only.	
	(C. (i) and (ii) only	D. (i), (ii), and (iii)	
3.	A body is a st	able equilibrium has	5?	
	i.	A small base		
	ii.	Its centre of gravit	y raised after a small displacement	
	iii.	It's a centre of gra	vity lowered after a small displacement	
	iv.	A wide base		
		A. (i) and (ii) only	B. (ii) and (iii) only	
		C. (iii) and (iv) only	D. (ii) and (iv) only.	
4.	Which of the	following statement	ts is correct about soft ferromagnetic materials?	
	(i)	They do not lose the	heir magnetism easily	
	(ii)	They are easily and	d strongly magnetized	
	(iii)	They are used to n	nake permanent magnets	
		A. (i) and (ii) only	B. (ii) and (iii) only.	
		C. (ii) only	D. (iii) only	

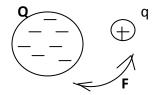
- 5. Which one of the following is a basic unit?
 - A. Watt.
- B. Joule
- C. Newton
- D. Kilogram.
- 6. A girder which is under tension is called a?
 - A. Tie
- B. Beam
- C. Strut.
- D. Pillar
- 7. Which of the following diagrams shows the correct path of electrons through a magnetic field directed in to the page?




- 8. A transverse wave of wavelength 0.4 m and frequency of 2 Hz is sent down a slinky of length 2 m. Find the time the wave takes to traverse the slinky.
 - A. 2.5 s
- B. 1.6 s
- C. 1.0 s
- D. 0.4 s
- 9. Short sightedness
 - A. Is due to short eye balls.
 - B. Is when one has a clear view of distant objects.
 - C. Can be corrected using a concave lens.

- D. Is due to eye lenses whose focal length can be adjusted.
- 10. Which one of the following diagrams shows the correct direction of force, f between a point charge **q** and a large body with charge **Q**?


A.


В.

C.

D.

- 11. X-rays differ from ultraviolet rays in that x-rays have,
 - A. Shorter wavelength
- B. lower frequency
- C. Lower velocity
- D. No charge

- 12. The watt is given by
 - A. voltage Current

B. Voltage x current

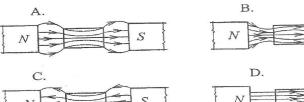
C. Current

D. Current x Current voltage

13. A Standing wave is found when,

- B. Destructive interference occurs.
- C. Two incident waves are reflected.
- D. incident and reflected waves of the same frequency and amplitude combine.
- 14. A force that keeps a body moving in a circular path is called?

- A. Gravitational force
- B. electrostatic force
- C. Centripetal force.
- D. magnetic force
- 15. Which of the following is a renewable source of energy?
 - A. Wood
- B. Wind
- B. Coal
- D. Geothermal
- 16. Find the power lost by a car if its engine loses 2000 kj of heat in $1^{1}/_{2}$ hours?


3

C.
$$2 \times 2 \times 10^6$$
 W

B.
$$2 \times 2 \times 10^6$$
 W

D.
$$2 \times 3 \times 10^3$$
 W

17. Which one of the following diagrams below represents the magnetic field pattern when a piece of iron is placed between poles of permanent magnets?

18. Figure 1 shows a thin copper rod heated uniformly along its length

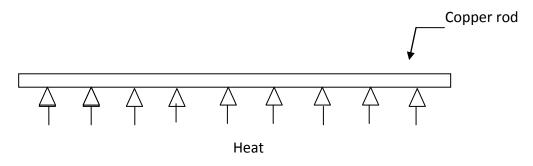


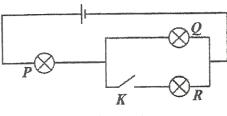
Figure 1

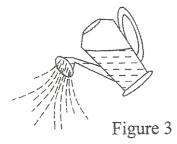
Which of the following statement is true about the rod?

- (I) its mass decreases.
- (ii) Its volume increases.
- (iii) It will become longer.
- A. (i) and (II) only.
- B. (ii) and (iii) only.
- C. (i) and (iii) only.
- D. (i), (ii) and (iii)
- 19. When a sheet of paper is placed between a radioactive source and a detector, the count reduces. When the sheet of paper is placed with aluminum sheet, the count rate goes to zero. the source is emitting
 - A. Gamma radiation only
 - B. beta and gamma radiations only
 - C. Alpha and gamma radiations only
 - D. Alpha and beta radiations only

- 20. Which one of the following uses a convex lens to give a real, inverted and magnified image?
 - A. The eye

- B. The projector
- C. The lens camera
- D. The magnifying glass
- 21. A steel needle floats on the surface of clean water because of
 - A. Cohesion.
- B. Adhesive.
- C. Capillarity.
- D. Surface tension.
- 22. Three identical lamps **P**, **Q** and **R** are connected as shown in Figure 2.




Figure 2

What happens to the brightness of **P** and **Q** when switch, **K** is closed?

P Q

- A. Increases decreases
- B. decreases increases.
- C. remains the same increases
- D. remains the same decreases.
- 23. Find the force required to accelerate a body of mass 100 g at a rate of 2 ms⁻²
 - A. $2 \times 10^2 \text{ N}$
- B. 5 X 10¹ N
- C. $2 \times 10^{1} \text{ N}$
- D. 2 X 10⁻¹ N
- 24. Which one of the following energy changes takes place in a generator?
 - A. Potential energy → kinetic energy → chemical energy

- B. Potential energy electrical energy chemical energy
- C. Chemical energy → electrical energy kinetic energy
- D. Chemical energy → kinetic energy → electrical energy.
- 25. Figure 3 shows a garden watering can in use.

The property of liquid pressure applied when using the can is?

- A. Pressure increases with path
- B. A liquid finds its own level.
- C. Pressure works equally in all directions
- D. Pressure increases with density.
- 26. Figure 4 shows a graph of load against extension for a metal.

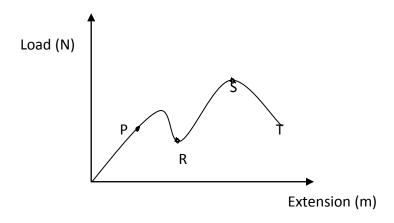


Figure 4

Identify a point where the metal is still elastic.

B. R

c. s

D. T

27. Two atoms of hydrogen ${}^2_{\bf 1}H$ combined to form a helium atom and a neutron. Which one of the

following equation represents the reaction?

$$A._{1}^{2}H + _{1}^{2}H \longrightarrow _{2}^{4}He + _{0}^{1}n$$

$$B._{1}^{2}H + _{1}^{2}H \longrightarrow _{2}^{3}He + _{0}^{1}n$$

$$C._{1}^{2}H + _{1}^{2}H \longrightarrow _{2}^{5}He + _{0}^{-1}n$$

$$D._{1}^{2}H + _{1}^{2}H \longrightarrow _{2}^{4}He + _{0}^{-1}n$$

28. Which of the following statements is correct about electric charge?

- (i) Charge resides only on the inside of a hallow conductor.
- (ii) charge is concentrated at the pointed end of a conductor
- (iii) Like charges attract each other
- (iv) A high concentration of a charge on a conductor leads to ionization of air.

29. Find the force that would cause the momentum of a body to change from 80 kg ms⁻¹ to 100kgms⁻¹ in 5 s.

30. Figure **5** shows two waves representing two musical notes.

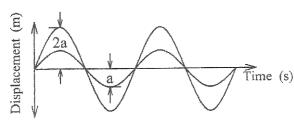


Figure 5

Which of the following statement is true?

- A. The two waves produce sound of different pitch.
- B. The two waves produce sound of different wavelength
- C. The two waves produce sound of the same loudness
- D. The two waves produce sound of different loudness
- 31. In domestic wiring ,bulbs are connected in parallel,
 - A. To avoid short circuiting
 - B. In order to use one switch for all the bulbs.
 - C. So that they are all connected to the same fuse
 - D. So that a fault in one bulb does not affect the working of the other bulbs.
- 32. Which of the following is due to cohesive forces being stronger than adhesive forces?
 - I. Capillarity rise in a narrow tube
 - II. Capillary depression in a narrow tube.
 - III. Formation of spherical drops on a dry glass plate
 - A. (I) and (iii) only B. (i) and (ii) only
 - C. (ii) and (iii) only D. (iii) Only

- 33. a red filter appears in white light because
 - A. It absorbs red colour and transmits the other colours of white light.
 - B. It transmits the red colour and absorbs the other colours of white light
 - C. The red light is dispersed more than the other colours.
 - D. Red is a dominant colour in the spectrum.
- 34. the inner walls of the vacuum flask are highly polished to,
 - A. Reduces heat loss by convection
 - B. Reduces heat loss by evaporation
 - C. Prevent heat loss by radiation
 - D. Reduces heat loss by conduction.
- 35. Figure 6 show levels of water in measuring cylinder before and after immersing a solid X of mass 40 g.

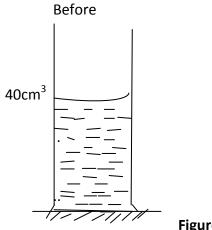
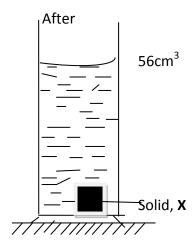
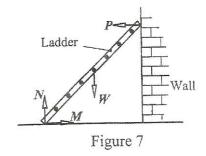



Figure 6



Find the density of solid X in gcm⁻³

	A.	1.0	В.	1.4		
	C.	2.4	D.	2.5		
36. Whe	en a subst	tance is boiling ,its saturation vapo	ur p	pressure is,		
	A.	Maximum			1	
	В.	Minimum				
	C.	Above the atmospheric pressure	<u> </u>			
	D.	Equal to the atmospheric pressu	re.			
37. A 12	2 V bulb is	connected to a coil of 100 turns w	oui/	nd on an iron rod. The bulb lights when a		
seco	nd coil w	ound on the same iron rod is conn	ect	ed to a 240 V mains supply. Calculate the		
num	nber of tu	rns of the second coil.				
	A.	2000				
	В.	288				
	C.	5				
	D.	2				
38. A ba	alloon rise	es in the atmosphere when,				
	A.	The up thrust is less than its weight	ght			
	В.	The upthrust equals to its weigh	t			
	C.	The density of the air reduces				
	D.	The upthrust is greater than its v	veig	ght		
39. Iner	tia is a pr	operty of a body which				
	A.	Makes a body continue to accele	erat	e		
	В.	Enables a body to continue mov	ing	with a constant velocity	Г	
	C.	Makes the momentum of the bo	dy	to decrease		
	D.	Define the rate of change of the	vel	ocity	L	

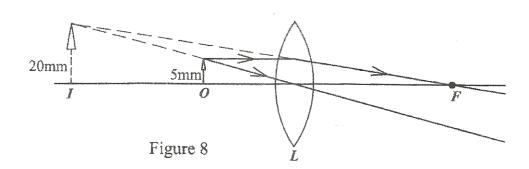
40. Figure 7 shows a ladder leaning against a wall with forces P,N,W and M acting on it

The force that would cause the ladder to slide is,

A. P

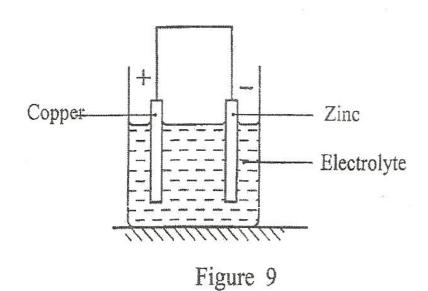
B. W.

C. N


D. M.

SECTION B (40 MARKS)

Answer *all* questions in this section. All workings must be clearly shown in the spaces provided.


11. (a) What is an electromagne t?		hat is an electromagne t?	(01 mark)	
		(b) State two ways of minimizing energy losses in a transform	, ,	
		(c) What is the use of a transformer?	(1mark)	
	42		(04	
	42.	(a) Define the power of a lens.	(01 mark)	

(b) In figure 8, a lens *L* forms an image of an object, O at I,60 cm from the lens. *F* is the principal focus of the lens.

If the height of O is 5 mm and height of I is 20 mm, find the distance of th	ie object, O
from the lens.	(03 marks)

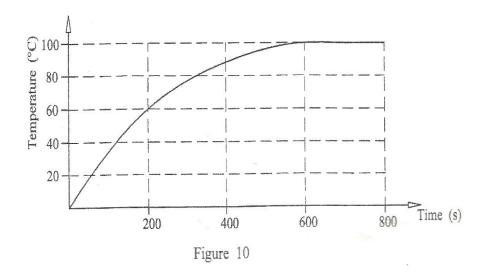
43. (a) Figure 9 shows the structure of a simple cell.

(i) Show on the diagram, the direction of conventional current (01 marks)

(ii) Name the electrolyte (01 marks)

(b) (i) what is meant by **polarization** as applied to the cell? (01 marks)

(ii) State the effect of polarization on the cell.


(01 marks)

44. (a) Det	fine kinetic energy ?		
	(b) A car of mass 900 kg is brought to r m. F ind the breaking force.	rest from a speed of 36 kmh ⁻¹ c	
45. (a) wh	at is a saturated vapour?		(01 marks)
(b) Sta	ate two ways of increasing the rate of ev	aporation.	(01 mark)
(c) Ske mass.	etch the variation of pressure with temp	erature at constant volume for (02 marks)	r argon of fixed

46. (a) Draw diagrams to illustrate what happens to plane waves incident on a slit when

(i) the width of the slip is large compared to the wavelength of the waves.			
	(01 marks)		
(ii) the width of the Slit is small compared to the wavelength of the wave.	(01 mark)		
(b) Water waves are made by a plane dipper moving up and down 3 times of the velocity of the waves is 12 cm ⁻² , what is the wavelength of the wave?			
	02 marks)		

	47.	(a) what are isotopes ?	(01 mark)
		(b) State what happens to both the mass number and atomic number of	a radioactive
		nuclide when it decays by (i) beta emission.	(01 mark)
		(i) beta cinission.	
		(ii) Alpha emission	(01 mark)
		(c) State two uses of radioactivity.	(01 marks)
48.	(a) An	electric kettle is rate 240V, 2000 W. what does this statement mean?	
	, ,		(01 mark)
	(b) The	e graph in figure 10 shows the variation of temperature with time when a	500 W heater is
	Immer	rsed in water at 0°C.	

	(i) Find the energy supplied by the heater in 400s.	(02 marks)
	(ii) After how long does the water start boiling?	(01 mark)
49.	(a) state four properties of electric field lines.	02 mark)
	(b) Draw electric field patterns between	
	(i) two identical point charges which are positively charged and c	lose to each other.
		(01 mark)

	(ii) a point charge which is negatively charged and a positively charged pa	arallel plate.
		(01 mark)
50.	(a). Define the term pressure .	(01 mark)
	(b) Find the pressure exerted by a person standing if his mass is 100 kg a	nd the total
	area his shoes makes with the ground is 400 cm ² .	(03 marks)

END