Name	 	 	
signature			
545/2			
Chemistry			
Paper 2			
June/July 2019			
2 hours			

UCE MOCK EXAMINATION 2019 UGANDA CERTIFICATE OF EDUCATION

CHEMISTRY

PAPER 2

2 HOURS

INSTRUCTIONS TO CANDIDATES:

- > This paper consists of two sections A and B.
- > Section A is compulsory
- > Attempt only two questions in section B
- Answers to questions in section A MUST be written in the spaces provided.
- > Answer ALL questions in both sections A and B.
- > Answers to questions in section **B MUST** be written on the answer sheets provided.

SECTION A

All questions are compulsory

1. (a) Name **two** types flames that a Bunsen burner can produce. (01mk)

b) S	tate;	
i)	The condition (s) under which each of the Bunsen burr named in (a) is produced;	(1mk)
	Which one of the flames that you have named in (a) is mks)	s more suitable for use. (½
	Give a reason for your answer in (b) (ii).	(½ mks)
	he gas which is used as a fuel in the Bunsen burner is a laula C_4H_{10} ,	hydrocarbon of molecular
i)	Name the gas.	(01mk)
ii)	State the homologous series to which the hydrocarbon	belongs. (01mk)
(a) i)	Water was added to sodium peroxide; State what was observed;	(02mks)
ii)	Write equation for the reaction which took place.	(1 ½ mks)

2.

	b) St	ate;
	i)	How the gaseous product from the reaction between sodium peroxide and water can be tested? ($\frac{1}{2}$ mk)
	ii)	Two uses of the other product of reaction between sodium peroxide and water. (01mk)
3.	(a) Na i)	ame one substance in each case, which is; a carbonate that shows no change in mass when heated. (½ mk)
	ii)	a compound that when heated turns directly into gas (es) without first melting. (01mk)
	iii)	a nitrate, which when heated, produces oxygen as the only gaseous product; ($\ensuremath{\rlap{1}}_2$
		mks)

i)	Iron and sulphur. mks)	(1 ½
ii)	Zinc and dilute sulphuric acid	(1 ½ mks)
(a) N	Magnesium powder was added to copper (II) oxide and	the mixture heated;
)	State what was observed;	(02mks)
i)	Write equation for the reaction that took place.	(1½ mks)
		· ··· ··· ··· ··· ··· ··· ··· ··· ···
	(i) If the procedure in (a) was repeated using calcium de, state how calcium would be affected.	oxide instead of copper (½ mk)

...

. (a) (i		(01mk)
ii) Na	me one common alloy of iron.	(½ mk)
) Give iron its 	two reasons why the alloy you have names in (self.	ii) is more often used than (01mk)
	 	·
Name i)	the major components of the following alloys; Solder	(01mk)
ii) 		(01mk)

		·········	
6.		he atomic numbers of elements X, Y and Z are 11, 15 and 17 respectively; Write the electronic configuration of;	
		X:(01mk)	,
		Y:	` ,
		(01mk)	
	b)	State the period in the periodic table to which each of the three elements be (01mk)	elongs.
•••	• • • •		
•••	c)	Element Z can react with both X and Y to form solid products Q and R respectively; i) Identify which one of the products would have a lower melting point. (01m)	
		ii) Give a reason for your answer in (c) (i) above. (01mk)	
7.	am	n an experiment to study the reaction of lead (II) and copper (II) ions, excess nmonia solution was added to an aqueous solution containing a mixture of cop nd lead (II) ions and the resultant mixture filtered;	
		a) State the colour of the; i) Residue (01ml	ks)

ii) 	Filtrate	(01mk)
	Vrite;	
i) 	The formula of the cation that was in the filtrate;	(½ mk)
 ii)	Equation for the reaction that resulted into formation of	(1 ½ mks)
	the experiment above was repeated using excess dilute solution; identify the cation that would appear in the;	
i)	Residue	(01mk)
ii) 	Filtrate	(01mk)

 (a) Potassium hydroxide can react with a solution of ammonium sulphate to produce ammonia according to the following equation; 2KOH_(aq) + (NH₄)₂SO_{4(aq)} → K₂SO_{4(aq)} + 2H₂O₍₁₎ + 2NH_{3(g)}
Calculate the volume of ammonia that would be produced at room temperature if excess potassium hydroxide reacted with 150 cm 3 of a 2M ammonium sulphate solution. (1mole of a gas occupies 24 dm 3 at room temperature). (3 $\frac{1}{2}$ mks)

b) (i) Name a laboratory reagent that is used to detect ammonia. (½ mk)

ii) State what would be observed if ammonia was treated with the reagent you have named in (b) (i). (01mk)

9. The mass numbers of some particles \boldsymbol{Q} to \boldsymbol{Z} and their numbers of electrons and

neutrons are shown in the table below;

Particle	Mass number	Number of electrons	Number of neutrons
Q	14	7	7
R	24	10	12
T	31	15	16
W	36	18	`9
Χ	39	19	20
Υ	40	18	22
Z	41	19	22

Ide	ntify which one of the is or are;	
a)	Isotopes	(01mk)
b)	An anion	(01mk)
c)	 A cation	(01mk)
d)	Atoms of elements in the same group of the periodic table. (01r	nk)
 e)	The atom of an inert gas.	(01mk)
	 a) Name one allotrope of carbon which is; Amorphous mk)	(½
 ii)	 Crystalline mk)	(½
b)	State one use of each of carbon allotropes that you have named in	(a) (02mks)

	· ··· ··· ··· ··· ··· ··· ··· ··· ···	
··· ··· ··· ··· ···		
c) Name one element other than carbon which shows allotropy	(01mk)	
		•••

SECTION B Attempt only two questions

11. (a) Define the term "enthalpy of combustion"

(01mk)

- b) (i) Draw a labeled diagram of the set up of apparatus that can be used to determine the enthalpy of combustion of ethanol in the laboratory. (04mks)
- ii) State why the enthalpy of combustion of ethanol obtained experimentally using the kind of apparatus that you have drawn is normally found to be less than the literature values and suggest **two** ways by which the experimental value can be improved.

 (02mks)
- c) State two practical applications of enthalpies of combustion. (02mks)
 - d) When 4.0g of ammonium nitrate, NH_4NO_3 was dissolved in 96.0cm³ of water, the temperature of the water dropped from 27.0°C to 24.1°C.
 - i) Give a reason why there was a drop in the temperature of the water. (1mk)
 - ii) Calculate the enthalpy of solution of ammonium nitrate (H=1, N=14, O=16, density of water is 1 gcm³, and heat capacity of ammonium sulphate solution is 4.2Jg⁻¹°C) (05mks)
- 12. (a) (i) State the conditions under which hydrochloric acid reacts with potassium manganate (VII) during laboratory preparation of chlorine; and write equation for the reaction leading to the formation of chlorine. (2 ½ mks)

		lain how a pure dry sample of chlorine can be obtated in (a) (i) (No diagram is required)	ained during it (03mks)	ts preparation
	•	and explain how chlorine is prepared on a large s diagram is required)	scale using soo (05mks)	dium chloride
	,	e hydrogen chloride solution was added drop wise excess and the mixture allowed to stand	to lead (II) o	cide until in a
	i) S	Stat what was observed and write equation for the	e reaction that	took place. (03mks)
	,	From the reaction in (c) (i), deduce any conclusion concerning the composition of hydrogen chloride.		` ,
13.	fer menta	line how a sample of a concentrated solution of extion of glucose $C_6H_{12}O_6$ (No diagram is required quation of reaction)		
	using sul	y describe and explain how a sample of ethene ca phuric acid (Your answer should include condition is required) (4 ½		
	c) Write	equation to show the reaction of ethene leading to	o formation of	;
	i) ii)	1,2 -dibromo ethane Polyethene	(1 ½	mks) (01mk)
	iií)	Water and carbon dioxide	(1 ½	mks)
	d) State i) ii)	one ; Use of ethanol other than preparation of ethene Use of polyethene	(½)	mk) (½ mk)
14.		ite the chemical name and formula of one oxide a the major ores of iron.	nd one carbon (02mks)	ate, which are
		g the extraction of iron, the ores are first roasted ed into the Blast furnace. State the purpose of ro		n ores in air.
	,	he major impurity in the ore wo substance which are fed into the blast furnace	e together with	(½ mk) roasted iron (01mk)

- iii) Any other substance that is also fed into furnace; and describe where from the substance is let into the furnace. (01mk)
- d) Using equations only outline reaction which take place inside the Blast furnace up to;
- i) Reduction of the ore

(3 ½ mks)

ii) Removal of the major impurity in the ore.

(02mks)

- e) State the importance of slag during extraction of in the furnace. (01mk)
- f) Give a reason why iron is extracted by chemical reduction whereas sodium is extracted by electrolysis. (01mk)
- g) When excess iron filings was added to 125 cm³ of a solution containing 0.5 mole of copper (II) sulphate per dm³, and the experiment allowed to stand until there was no further change, a brown solid formed on the iron filings.

 Determine the maximum mass of the brown solid that was formed. (0=16, S=32, Fe=56 and Cu=64)

END