MARKING GUIDE P530/2 2018

1. (i) Similarities

- Population size of both tribolium and oryzaephilus reaches maximum
- Population size of both tribolium and oryzaephilus increases at the start of experiment

Differences

Population size of tribolium	Population size of oryzaepilus
Reaches maximum later	Reaches maximum earlier;
Does not reach a peak	Attains a peak;
Higher throughout the experiment	Lower throughout the experiment;
 Increases rapidly at the start of the experiment 	 Increases gradually at the start of the experiment;
 Increases gradually in the middle of the experiment 	 Decreases gradually in the middle of the experiment;
 Increase gradually and then rapidly at the end of the experiment 	 Decreases gradually to extinction at the end of the experiment;

1mark@, max 06marks

(ii) Similarities

- Population size of both tribolium and oryzaephilus attains a peak;
- Population size of both tribolium and oryzaephilus increase at the start of the experiment;
- Population size of both tribolium and oryzaephilus decrease after the peak;
- Population size of both tribolium and oryzaephilus increases gradually in the middle;
- Population size of both tribolium and oryzaephilus increase at the start of the experiment;

Differences

Population size of tribolium	Population size of oryzaephilus
Attains a higher peak	Attains a lower peak;

Attains a peak earlier	Attains a peak later;
 Increases rapidly at the start of the experiment 	 Increases gradually at the start of the experiment;
Decreases rapidly after the peak	Decreases gradually after the peak;
Higher throughout the experiment	Lower throughout the experiment;
 Increases rapidly at the end of the experiment 	 Decreases gradually at the end of the experiment;

1mark@, max

07marks

(b)(i) Population size of tribolium increases rapidly as that of oryzaephilus decreases to extinction due to higher reproductive potential/growth rate of tribolium; hence putting oryzaephilus at a disadvantage in terms of competition for food/flour;

In the middle of the experiment, population size of oryzaephilus increases gradually as that of tribolium is decreasing rapidly due to increased inter-specific competition;

At the end of the experiment population size of tribolium increases rapidly as that of oryzaephilus deceases since tribolium is a better competitor;

However population size of oryzaephilus does not decrease to extinction; due to some oryzaephilus avoiding direct competition from tribolium by utilising the microhabitats provided by the glass tubings;

1mark@, max 05marks

(c)(i) Gauase's competitive exclusion principle; where two different species competing for the same resource; cannot co-exist; so the weaker species is outcompeted to extinction;

1mark@, max 04marks

(ii) Resource partitioning; where two different species share the same resource; allow coexistence; so both species survive;

1mark@, max 04marks

(d) Harmful to both species; as they don't adequately utilise the resources as they would do in the absence of the other species;

Important in spacing out individuals; in areas where they can adequately obtain resources;

Allows niche differentiation/specialization preventing niche overlap;

1mark@, max 05marks

(e) (i) Population size of tribolium would continue increasing; as that of oryzaephilus decreases;

Population of both tribolium and oryzaephilus later decreases to extinction; due to food resources becoming scarce; and due to accumulation of wastes;

¹/2mark@, max

02¹/2marks

(ii) Population of oryzaephilus would increase rapidly than when mixed with tribolium; to a carrying capacity; where it stabilizes; and later decreases; due to scarcity of food;

¹/2mark@, max

02¹/2marks

SECTION B (60 marks)

2(a) (i) Increased selection pressure occurs under harsh conditions; such as predation/competition/diseases/very hot temperatures/very cold temperatures etc;

When the population is large resources become scarce leading to stiff intra-specific completion; causing a large number of poorly adapted individuals to die due to starvation/predation;

Only the individuals well adapted/specialised at obtaining food/avoiding predation survive; leading to reduced variability and the population becomes uniform;

1mark@, 06 marks

(ii) Stabilizing selection eliminates extremes of a phenotypic range; and selects for the intermediates, enhancing their reproductive success of the intermediates,

By selecting phenotypes close to the mean; stabilizing selection reduces variation in the population; and therefore reduces the opportunity for evolutionary change;

Accept illustrations

1mark@, max

06marks

(b) Homologous structures have the same basic plan in the different organisms but modified to perform different functions/serve different niches; for example the pentadactyl limb in

vertebrates; like in monkeys the digits are elongated for grasping tree branches and in man the same pentadactyl limb is modified for manipulation;

Also the basic structure of all flowers consists of petals, sepals, carpels and stamens; yet number of petals and other aspects differ;

Some homologous structures are reduced in size and these are called vestigial structures;

Homologous structures and vestigial structures show that organisms possessing them descended from a common origin; and this confirms divergent evolution;

Analogous structures have different basic structures but are modified to perform the same function; for example wings of insects and wings of birds/eyes of mammals and those of cephalopods etc; analogous structures confirm convergent evolution;

1mark@, max 08marks

3(a)

- Meristematic tissues consist of small cuboid cells with dense cytoplasm;
- Thin walls;
- Many small vacuoles;
- Undifferentiated plastids;
 1mark@, max 03marks

(b)

Apical meristems	Lateral meristems
Cause increase in height/length of the plant	Cause increase in girth/diameter/width of the stem;
Lead to formation of primary tissues	Lead to formation of secondary tissues;
Located at root and shoot tips	Located inside the sides of a stem;

1mark@, max 03 marks

(c) Xylem parenchyma tissue; has spherical/polygonal cells; that form radial sheets/medullary rays for support;

Parenchyma tissue has cells with a flexible membrane; that allow the cells to expand and become turgid; with cells closely packed; hence offering hydrostatic support;

Collenchyma tissue; has polygonal/rectangular cells; that have cellulose cell wall; to offer tensile

strength; and compressional strength; for extra support;

Sclerenchyma tissue; in the form of fibres; is lignified; elongated; and longitudinally arranged in sheets/bundles for support;

Stone cells/sclereids are also a form of sclerenchyma; which are also lignified; spherical; arranged in groups; to offer firmness;

Xylem also comprises of the trachieds; and vessel elements; that are also lignified to offer strength;

In stems vessels are at the peripheral of the stem for support;

Trachieds have tapering ends that interlock with neighboring trachieds for firm support;

In roots vessels run longitudinally as separate rods to resist collapsing due to tugging strains caused by bending of aerial parts;

Mature xylem completes development by annular; or spiral; or reticulate lignification to increase support;

¹/₂mark@, max 14marks

4(a) (i) Let **B** represent allele for broad abdomen;

Let A represent allele for long wing;

Let **b** represent allele for narrow abdomen;

Let a represent allele for vestigial wing;

Let XX represent the genotype for female drosophila;

Let XY represent the genotype of male drosophila;

½mark@, 03marks

Parental phenotypes: Vestigial winged, broad abdomen male; x long winged, narrow abdomen female;

Parental genotypes: $X^{aB}Y$ x $X^{Ab}X^{Ab}$;

Meiosis:

Gametes: X^{aB} Y X^{Ab} X^{Ab} ;

Random fertilisation;

 F_1 genotypes: $X^{ab}X^{ab}$, $X^{ab}Y^{ab}$, $X^{ab}Y$, $X^{ab}Y$, $X^{ab}Y$;

F₁ phenotypes; **2** long winged, broad abdomen female flies**;**: **2** long winged, narrow abdomen

male flies;				
			½mark@, 04m	arks
(ii) F1 genotypes:	$X^{Ab}Y$;	Х	X ^{Ab} X ^{aB} ;	
Meiosis:				
Gametes:	X^{Ab} , Y		χ^{Ab} , χ^{aB} ;	
Random fertilisation;				
F2 genotypes:	$X^{Ab}X^{Ab}$,	$\chi^{Ab}\chi^{aB}$,	$X^{Ab}Y$, $X^{aB}Y$;	
F ₂ phenotypes: 1 long w	ringed, narrow al	odomen female fly ;		
1 long win	ged, broad abdo	men female fly;		
1 long wing	ged, narrow abdo	omen male fly;		
1 vestigial	winged, broad a	bdomen male fly;		
	1/2	amark@, 04marks		
(b) The lack of 1:1:1:1 i and that for size of abo 1mark		tion of crossing ove	er between the gene for wing len	gth
Parental phenotypes: V female	estigial winged,	narrow abdomen n	nale;x long winged, broad abdor	nen
Parental genotypes:	XabY	х	X ^{Ab} X ^{aB} ;	
Meiosis:				
Gametes:	X ^{ab} Y		X ^{AB} , X ^{Ab} , X ^{aB} ,X ^{ab} ;	
Random fertilisation by	punnett square.	•		
X	AB X ^{Ab}	XaB	X ^{ab} ;	
X ^{ab} X	AB Xab XAb Xab	X ^{aB} X ^{ab}	X ^{ab} X ^{ab} ;	
YX	ABY XABY	X ^{aB} Y	X ^{ab} Y;	
Phenotypes: 35 long w		domen flies: 17lon	 g winged, broad abdomen fly: 36	5

Phenotypes: 35 long winged, narrow abdomen flies: 17long winged, broad abdomen fly: 36 vestigial winged and narrow abdomen fly: 18 vestigial winged and broad abdomen flies; 1/2mark@, Max 04½marks

(c)

- Breed quickly/mature faster;
- Breed throughout the year;
- Have only 4 pairs of chromosomes;
- Have giant chromosomes in their salivary glands;
- Sex can easily be distinguished;
- Cheap to culture;

5(a)

- Body size; Small organisms have a higher heart rate than larger ones due to their higher metabolic rate;
- Age; Young organisms have higher metabolic rate due to rapid growth and hence higher heart rate;
- Environmental temperature; Increase in temperature increases metabolic/respiratory rate leading increase in heart rate to eliminate excess carbon dioxide and to supply metabolites;
- State of health; Illness increases heart rate due to increased temperature and carbon dioxide;
- Exercise; increases metabolic rate leading to increase in heart rate in order to supply nutrients to muscles and to eliminate carbon dioxide;
- State of emotion/level of hormones/drugs; increase heart beat causing supply of more nutrients to tissues;
- Sex; heart rate is higher in males than females since males are poorly insulated leading to higher metabolic rate;

Any 4 factors, ½mark for a factor, 1mark for correct explanation, max 06 marks

 $(\mathbf{b})(\mathbf{i})$ Waves of excitation/stimulation are initiated by the sino-atrio node (SAN); the pacemaker;

From the SAN waves of excitation spread across both atria; causing them to contract at the same time;

From the atria the waves of excitation reach another special group of muscles fibres called the atrio-ventricular node (AVN); and then spread to purkinje fibres/purkyne tissues via bundle of His; from where they spread across both ventricles causing them to contract simultaneously starting from the apex;

Heart beat is controlled by the nervous system; via the sympathetic nerve and vagus nerve that

are connected to the SAN;

Sympathetic nerve sends impulses to the SAN that accelerate heart beat; and vagus nerve brings impulses that slow down heart beat;

1mark@, max 10marks

(c)

- Pumping action of the heart forces blood through the thin walled veins;
- Contraction of skeletal muscles squeezes blood in veins to flow towards the heart;
- Valves in veins prevent back flow of blood and allow blood flow in one direction;
- Inspiratory movements create a negative pressure in in the thoracic cavity hence blood flows towards the heart;
- Gravity causes blood in organs above the heart to flow towards the heart;

1mark@,04marks

6(a)

- Can live in a wide range of temperatures; hence can live in a wide range of habitats;
- Can move long distances;
- Can easily obtain food since they are always active;
- Young ones have higher survival rate since they are born active;

1mark@, max 03marks

(b)

- Metabolic rate increases; generating more heat;
- Arterioles in the skin; constrict; less blood flows near the skin surface; reducing heat loss; by convection/radiation/conduction;
- Hairs stand erect; trap a layer of air; which insulates the skin;
- Skeletal muscles contract/shivering occurs; generating more heat;
- Sweating ceases; reducing heat loss; through evaporation;

- Decrease in body surface area/huddling; reduces heat loss;
 mark@,max 08
- (c) (i) Thermoreceptors in the skin; detect temperature changes;

Cold thermoreceptors detect decrease in temperature; and heat/hot thermoreceptors detect increase in temperature;

Thermoreceptors are connected to the brain by nerves; and therefore send impulses to the brain/control centre about changes in skin temperature; and the control centre sends stimulate appropriate corrective measures; to return the temperature back to norm; ½mark@, max 04 marks

(ii) The hypothalamus in the brain; detects changes in temperature of blood passing through the brain;

When temperature increases above norm stimulates the heat loss centre; in the (anterior) hypothalamus; that stimulates corrective measures; to decrease temperature back to norm;

Decrease in temperature of blood flowing through the brain below norm stimulates the heat gain centre; in the (posterior) hypothalamus; which stimulates corrective mechanisms that increase heat gain; to raise temperature back to norm;

½mark@, 05marks