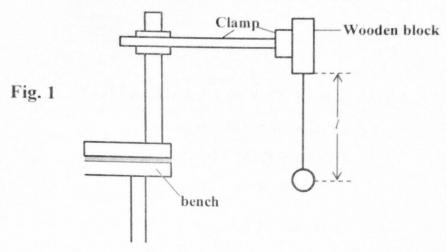
535/3 PHYSICS PRACTICAL PAPER 3 July/August 2018 2¹/₄ hours

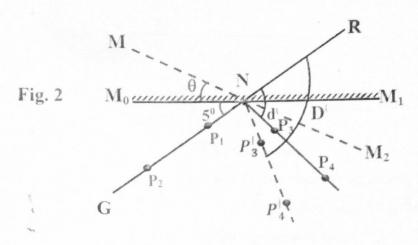
WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education PHYSICS PRACTICAL


Paper 3

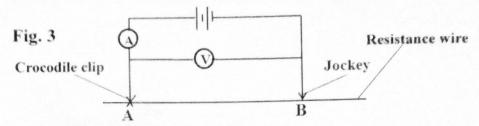
2hours 15 minutes

INSTRUCTIONS TO CANDIDATES:


- Answer question 1 and one other question. You will not be allowed to start with the apparatus for the first 15 minutes.
- Marks are given mainly for a clear record of the observations as soon as they are made. Whenever possible candidates should put their observations and calculations in a suitable table drawn in advance.
- An account of the method of carrying out the experiment is not required.
- Graph papers may be provided.
- Mathematical tables and silent non-programmable calculators may be used.

- In this experiment you will determine acceleration due to gravity, g, using a simple pendulum.
 - (a) Suspend the pendulum bob by means of a thread from a retort stand as shown below in figure 1.

- (b) Adjust the length, *l*, of the pendulum string to 0.900m.
- (c) Displace the pendulum bob through a small angle and allow it to oscillate.
- (d) Measure and record the time, t, for 20 complete oscillations.
- (e) Repeat procedure (b) to (d) for l = 0.800, 0.700, 0.600, 0.500 and 0.400m.
- (f) Tabulate your results in a suitable table including values of \sqrt{l} .
- (g) Plot a graph of t against \sqrt{l} .
- (h) Find the slope, S, of the graph.
- (i) Calculate g from $S = \frac{40\pi}{\sqrt{g}}$.


- In this experiment you are to investigate the relationship between the angle of
 rotation of a plane mirror and the angle of rotation of the reflected ray for a fixed
 point of incidence.
 - (a) Fix the white sheet of paper on the soft board.
 - (b) Draw a line M₀M₁ about 15.0cm long in the middle of a white sheet of paper.
 - (c) Label the midpoint of M_0M_1 as N.

- (d) Draw a line GNR at an angle of 50 to MoM1,
- (e) Place the plane mirror vertically along MoM1
- (f) Place points P_1 and P_2 on line GN.
- (g) View the images of P₁ and P₂ in the plane mirror and stick pins P₃ and P₄ such that they are in a straight line with images of P₁ and P₂.
- (h) Remove the mirror but not pins P₁ and P₂
- (i) Remove P₃ and P₄.
- (j) By means of a foot rule draw a straight line through holes of P₃ and P₄ to meet point N.
- (k) Measure and record angle d.
- (1) Draw a line MNM₂ at an angle, $\theta = 10^{\circ}$ to MoM1.
- (m) Place the plane mirror along MM₂.
- (n) Repeat procedures (g), (h) and (i)
- (o) Praw a line through P₃ and P₄ to meet M₀M₁ at N.
- (p) Measure angle D.
- (q) Repeat procedures (l) to (p) for values of $\theta = 20^{\circ}$, 30° , 40° , 50° and 60° .
- (r) Record your results in a suitable table, include (D d).
- (s) Plot a graph of (D d) against θ .
- (t) Find the slope, t, of the graph.

NB: HAND IN YOUR TRACING PAPER.

- 3. In this experiment you will determine the emf, E, and internal resistance, r of the cells provided.
 - (a) Connect the circuit as shown in the figure 3.

- (b) Starting with about 15cm from A to B, of the resistance wire, move the jockey until the ammeter gives a reading I of 0.30A.
- (c) Read and record the voltmeter reading V
- (d) Repeat procedure (b) and (c) for values of I = 0.40, 0.50, 0.60 and 0.70A.
- (e) Tabulate your results in a suitable table.
- (f) Plot a graph of I against V.
- (g) Find the slope, S, of your graph.
- (h) Find the value of, r, from the expression $r = \frac{1}{S}$.
- (i) From your graph determine the intercept, E, on the V-axis.