HOLIDAY WORK FOR MATHEMATICS

S.5 GROUP WORK 2

1. If
$$y = \sec x$$
, prove that $y \frac{d^2 y}{dx^2} = \left(\frac{dy}{dx}\right)^2 + y^4$.

- 2. Differentiate with respect x and simplify your answer $\ln \sqrt[3]{\frac{2+x^3}{2-x^3}}$.
- 3. Given that $y = \ln(x^2 + x + 2)$, show that $(x^2 + x + 2)\frac{d^3y}{dx^3} + 2(2x + 1)\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$.
- 4. Find the turning points to the function $y = \tan x 6\cos ecx$ and distinguish between them.
- 5. Determine the turning points to the curve $y=e^{-x} \sin x$.
- 6. Simplify $\log_e \sqrt{\frac{(x+1)e^{-2x}}{1-x}}$ and show that its derivative is $\frac{x^2}{1-x^2}$.

7. If
$$y = \ln(x^2 - 5)$$
, show that $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 2e^{-y}$.

8. If
$$y=\sin 2x \ln(\tan x)$$
, show that $\frac{d^2y}{dx^2}+4y=4\cot 2x$.

9. Given that
$$\tan y = \log_e x^2$$
, show that $x \frac{dy}{dx} = 2\cos^2 y$. Hence show that
$$x^2 \frac{d^2 y}{dx^2} + 2(1 + 2\sin 2y)\cos^2 y = 0$$
.

10. If
$$\log_e(x^2 + y^2) = \tan^{-1}\frac{y}{x}$$
, prove that $\frac{dy}{dx} = \frac{y + 2x}{x - 2y}$.

11. Differentiate
$$\cos^{-1}\left(\frac{3+5\sin x}{5+3\sin x}\right)$$
 giving your answer in its simplest form.

12. If
$$y = (\sec x + \tan x)^2$$
, show that $\cos x \frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} = 2y \tan x$.

13. Show that
$$\frac{d}{dx} \left[\tan^{-1} \left(\sec x + \tan x \right) \right] = \frac{1}{2}$$
.

- 14. Use the substitution $x^2 = \tan \theta$ to find (i) $\int \frac{1}{(1+x^2)^2} dx$ (ii) $\int \frac{x}{1+x^4} dx$
- 15. Express the following in partial fractions and find the integral in each case.
 - (a) $\frac{2x}{9-x^2}$ (b) $\frac{2x^2}{(2-x)(4+x^2)}$ (c) $\frac{x^2-8x+5}{(1+2x)(9+x^2)}$
 - (d) $\frac{11x+12}{(2x+3)(x+2)(x-3)}$ (e) $\int_3^5 \frac{x^3-3}{(x-2)(x^2+1)} dx$
- 16. If $y = \tan\left(2\tan^{-1}\frac{x}{2}\right)$, show that $\frac{dy}{dx} = \frac{4(1+y^2)}{4+x^2}$
- 17. Given that $y = \sin \theta$ and $x = 1 + \cos 2\theta$, show that $\frac{d^2 y}{dx^2} = 4\left(\frac{dy}{dx}\right)^3$
- 18. (a) The points P, Q and R have position vectors $2\mathbf{a} 5\mathbf{b}$, $5\mathbf{a} \mathbf{b}$ and $11\mathbf{a} + 7\mathbf{b}$ respectively. Show that P, Q and R are collinear and state the ratio $\mathbf{PQ} : \mathbf{QR}.$
 - (b) The points A and B have position vectors $4\mathbf{i} + 3\mathbf{j}$ and $\mathbf{i} + t\mathbf{j}$. Determine the values of t such that the angle $A\hat{O}B = \cos^{-1}\frac{2}{\sqrt{5}}$, where O is the origin.
- 19. Prove by induction that $\frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$.
- 20. In a triangle OAB, $\mathbf{OA} = \mathbf{a}$ and $\mathbf{OB} = \mathbf{b}$. Given that E divides OA in the ratio 6:1, D divides AB in the ratio 1:2 and point C is on OB produced such that $\mathbf{OC} : \mathbf{OB} = 3:2$, find the ratio $\mathbf{ED} : \mathbf{DC}$.
- 21. (a) Find the area enclosed by the curve y = x(3 x) and the line y = 2.
 - (b) Determine the volume generated when the area enclosed by the curve $y = x^2 + 4$ and the line y = 5 is rotated about the x axis through 360° .
- 22. (a) Use calculus to estimate $\sqrt[4]{63}$ correct to three significant figures.
 - (b) Use Maclaurin's theorem to expand $y = \ln(x^2 + 2x + 3)$ as far as the term in x^3 . Hence approximate $\ln 3.21$ correct to four decimal places.