S475/1 SUBSID. MATHEMATICS Paper 1 July 2017 $2\frac{2}{3}$ hours.

Uganda Advanced Certificate of Education MOCK SET 4 EXAMINATIONS 2017

SUBSIDIARY MATHEMATICS

Paper 1

2 hours 40 minutes

INSTRUCTIONS TO CANDIDATES

Answer all the **eight** questions in section **A** and only **four** questions in section **B**.

Any additional question(s) will not be marked.

Each question in section **A** carries **5** marks while each question in section **B** carries **15** marks.

All working must be shown clearly.

Graph paper is provided.

Where necessary, take acceleration due to gravity, $g = 9.8 \text{ m s}^{-2}$.

Silent non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 MARKS)

(Answer all questions in this section.)

Qn 1: The arithmetic progression (A.P) is given below:

$$ln(2-x) + ln(3-x) + ln(5-x) + \cdots$$

Find the value of x. [5]

- **Qn 2:** Vector $\mathbf{a} = 3x\mathbf{i} + 4\mathbf{j}$ and $\mathbf{b} = x\mathbf{i} 3\mathbf{j}$ are perpendicular. Find the possible values of x. [5]
- **Qn 3:** Find the number of ways in which the letters of the word "ATTENDENCE" can be arranged if:
 - (i). the three E's must **not** be together.
 - (ii). Only two E's must be together. [5]
- **Qn 4:** Events *M* and *N* are such that $P(M' \cap N) = 0.3$, $P(M \cap N) = 0.55$, $P(M' \cap N') = 0.1$. Find:
 - (i). P(M),
 - (ii). P(M or N). [5]
- **Qn 5:** Solve the equation $\csc \theta \sec \theta 2 \cot \theta = 0$, for $0^{\circ} < \theta < 180^{\circ}$. [5]

Qn 6: A traveller finds out that the price index for breakfast (B), lunch (L) and supper (S) in Kampala and Mbarara were as shown in the table,

Town	Price index					
	В	L	S			
Kampala	120	130	125			
Mbarara	115	135	110			

If the actual quantities consumed by the traveller for B, L and S were 300 g, 400 g and 300 g respectively. Calculate the weighted index for each town and comment on your result. [5]

- **Qn 7:** A continuous random variable X has a mean 15. The probability that X is less than 10 is 0.1057. Find the:
 - (i). variance to the nearest whole number.

(ii).
$$P(14 < X < 18)$$
. [5]

Qn 8: A boy pulls a box of mass 20 kg by means of a light inextensible string attached to it across a rough horizontal ground. The coefficient of friction between the box and the ground is 0.25. If the string is inclined at 30° to the horizontal and the box accelerates at 2 m s⁻², find the tension in the string.

SECTION B (60 MARKS)

(Answer any **four** questions from this section.)

Question 9:

The ages in years of teachers in a certain school were recorded as follows:

46	48	40	59	53	23	39	31	34	61	54	54
45	51	33	37	37	27	28	45	48	39	29	23
48	37	39	33	25	31	48	40	53	51	46	45
56	59	40	43	46	38	29	52	54	34	23	41
52	42	50	55	60	45	45	56	59	49	44	36
25	38	56	36	42	47	50	54	59	47	58	57

- (a). Construct a grouped frequency table with uniform class width of 5 starting with 20 as the lowest class limit. [3]
- (b). Calculate the:
 - (i). Mean age.
 - (ii). Modal age.
 - (iii). Standard deviation.

[7]

- (c). Draw a cumulative frequency curve and use it to estimate
 - (i). the median.
 - (ii). The number of teachers who should retire if the retirement age is 55 years. [5]

Question 10:

The table below shows the monthly sales of a certain product in (shs "000") for the year 2016.

Month	Sales	Month	Sales
January	220	July	175
February	210	August	186
March	200	September	176
April	207	October	170
May	196	November	159
June	189	December	168

- (a). Calculate 6-point moving totals and hence the moving averages. [6]
- (b). (i). Plot on the same axes actual sales and moving averages. Comment on the trend of sales during the year.
 - (ii). Determine the sales in January 2017.

[9]

Question 11:

Two variables X and Y were recorded as shown below:

X	10	140	120	100	80	70	40	10
Y	150	30	30	50	70	70	90	120

- (a). Plot a scatter diagram for the data and comment on the relationship between X and Y. Find X when Y = 75. [8]
- (b). Calculate a rank correlation coefficient and comment on the value obtained. [7]

Question 11:

- (a). Given the matrices $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 & 1 \\ 3 & -5 \end{pmatrix}$. Find:
 - (i). λ such that $|A \lambda I| = 0$; where I is a 2 × 2 identity matrix.
 - (ii). AB and BA and comment on the results.

[8]

(b). Mr. X bought a shirt and a tie at shs. 20,500 and Mr. Y bought two shirts and three ties at shs. 48,000. Form a pair of simultaneous equations for the purchases and use matrix method to determine the cost of a shirt and a tie. [7]

Question 13:

A differential function for a certain curve is given by $\frac{dy}{dx} = x - 1$, given that the curve passes through (0,0).

- (a). Determine the equation of the curve. [5]
- (b). Sketch the curve. [3]
- (c). Find the area enclosed between the x-axis and the curve. [3]
- (d). Differentiate $(3x^2 1)^5$; hence or otherwise evaluate:

 $\int_0^2 x (3x^2 - 1)^4 \, dx. \tag{4}$

Question 14:

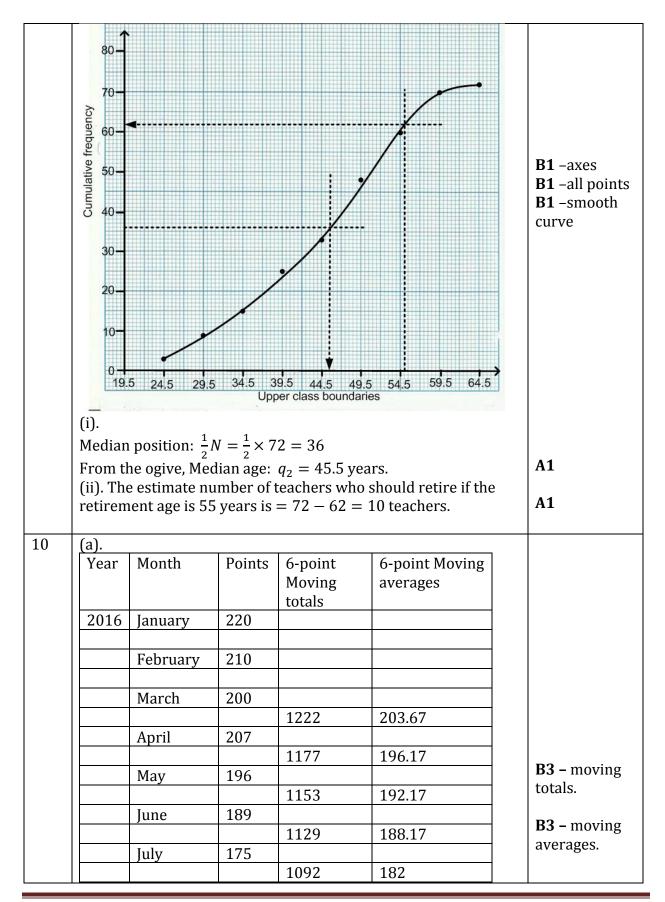
A car of mass one tonne is travelling down an incline of $\sin^{-1}\left(\frac{1}{20}\right)$ against a constant resistance of 2500 N. At an instant 25 m from the lower end of the incline, it is travelling at a velocity 4 m s⁻¹ with the engine working at 30 kW. Find the:

- (i). acceleration down the incline.
- (ii). Velocity at the end of the incline.
- (iii). Power output of the engine required to take it up the incline at a constant velocity of 10 m s^{-1} against the same resistance. [15]

END

NDEJJE SENIOR SECONDARY SCHOOL

Uganda Advanced Certificate of Education MARKING GUIDE FOR MOCK SET 4 EXAMINATIONS 2017


SUBSIDIARY MATHEMATICS Paper 1

Working SNo. Marks An A.P has a common difference, $\ln(3-x) - \ln(2-x) = \ln(5-x) - \ln(3-x)$ **M1** –equating the common difference $\ln\left(\frac{3-x}{2-x}\right) = \ln\left(\frac{5-x}{3-x}\right)$ M1 -using laws of logarithm $\left(\frac{3-x}{2-x}\right) = \left(\frac{5-x}{3-x}\right)$ **M1** (3-x)(3-x) = (2-x)(5-x)M1 -solving $3 - 3x - 3x + x^2 = 10 - 2x - 5x + x^2$ 3 - 6x = 10 - 7xx = 7**A1** 2 For perpendicular vectors, a.b = 0 $\begin{pmatrix} 3x \\ 4 \end{pmatrix} \cdot \begin{pmatrix} x \\ -3 \end{pmatrix} = 0$ M1 M1 dotting & equating to zero. $3x^2 - 12 = 0$ **B1** –output $x^2 = 4$ M1 -solving $x = \pm 2$ A1 -output 3 (i). Without restriction, "ATTENDENCE" has 10 letters with 2T's, 3E's and 2N's. number of arrangements = $\frac{10!}{T! E! N!} = \frac{10!}{2! 3! 2!} = 151200$ **B1** Taking 3E's as one such that they are always together, "ATTNDNC[EEE]" will have 8 letters with 2T's and 2N's number of arrangements $=\frac{8!}{T! N!} = \frac{8!}{2! 2!}$

	If the three E's are not tegether	
	If the three E's are not together, number of arrangements = 151200 - 10080 = 141120 (ii). Taking 2E's as one such that they are always together, "ATTENDNC[EE]" will have 9 letters with 2T's, 2E's and 2N's	M1 A1
	number of arrangements = $\frac{9!}{T! \text{ E! N!}} = \frac{9!}{2! \ 2! \ 2!} = 45360$	M1
	number of arrangements of $2E's = \frac{2!}{2!} = 1$	
	total number of arrangements = $45360 \times 1 = 45360$	A1
4	(i). $P(M') = P(M' \cap N) + P(M' \cap N') = 0.3 + 0.1 = 0.4$ $P(M) = 1 - P(M') = 1 - 0.4 = 0.6$ (ii).	B1 M1 A1
	$P(N) = P(M \cap N) + P(M' \cap N) = 0.55 + 0.3 = 0.85$ $P(M \text{ or } N) = P(M \cup N) = P(M) + P(N) - P(M \cap N)$ $= 0.6 + 0.85 - 0.55 = 0.9$	M1 A1
5	$ \frac{1}{\sin \theta} \times \frac{1}{\cos \theta} - 2 \cot \theta = 0 $ $ \frac{1}{\sin \theta} \times \frac{1}{\cos \theta} - \frac{2 \cos \theta}{\sin \theta} = 0 $ $ \frac{1}{\sin \theta \cos \theta} - \frac{2 \cos \theta}{\sin \theta} = 0 $	B1
	$\frac{1}{\sin \theta \cos \theta} = \frac{2 \cos \theta}{\sin \theta}$ $\sin \theta = 2 \sin \theta \cos^2 \theta$ $\sin \theta - 2 \sin \theta \cos^2 \theta = 0$	B1
	$\sin \theta (1 - 2\cos^2 \theta) = 0$ $\sin \theta = 0, \text{or,} (1 - 2\cos^2 \theta) = 0$ $\text{for,} \sin \theta = 0, \theta = 0^\circ, 180^\circ$ $\text{for,} (1 - 2\cos^2 \theta) = 0, \cos \theta = \pm 0.5,$	M1 M1
	$\Rightarrow \theta = 60^{\circ}, 120^{\circ}$ $\therefore \theta = 60^{\circ}, 120^{\circ}$	A1
6	Weighted index for Kampala = $\frac{\sum \left(\frac{P_1}{P_0} \times 100 \times W\right)}{\sum W}$	
	$= \frac{120 \times 300 + 130 \times 400 + 125 \times 300}{300 + 400 + 300}$	M1
	$= \frac{36000 + 52000 + 37500}{1000} = \frac{125500}{1000} = 125.5$ $\sum \left(\frac{P_1}{P_0} \times 100 \times W\right)$	A1
	Weighted index for Mbarara = $\frac{\sum (P_0 \times 100 \times W)}{\sum W}$ $= \frac{115 \times 300 + 135 \times 400 + 110 \times 300}{300 + 400 + 300}$	M1

	$= \frac{34500 + 54000 + 33000}{1000} = \frac{121500}{1000} = 121.5$ Comment: There was a 21.5% increase in the prices of consumed quantities in Mbarara.	A1 B1
7	(i). $P(X < 10) = 0.1057$ $P\left(Z < \frac{10 - 15}{\sigma}\right) = 0.1057$ $\frac{10 - 15}{\sigma} = -\phi^{-1}(0.1057)$ but, $\phi^{-1}(0.1026) = 0.26$ Value in Add column = $1057 - 1026 = 31$ $\phi^{-1}(0.1057) = 0.268$ $\frac{10 - 15}{\sigma} = -0.268$ $-5 = -0.268\sigma$ $\sigma = 18.657$ variance = $\sigma^2 = 18.657^2 = 348$ (nearest whole number) (ii). $P(14 < X < 18) = P\left(\frac{14 - 15}{18.657} < Z < \frac{18 - 15}{18.657}\right)$ $= P(-0.054 < Z < 0.161)$ $= \phi(0.054) + \phi(0.161) = 0.0215 + 0.0640$ $= 0.0855$	M1 A1 M1 A1
8	Resolving vertically, $R + T \sin 30^{\circ} = 20g$ $R + 0.5T = 20 \times 9.8$ $R = 196 - 0.5T$ $\Rightarrow f = \mu R = 0.25(196 - 0.5T) = 49 - 0.125T$ Resolving horizontally, $T \cos 30^{\circ} - f = 20a$ $T \cos 30^{\circ} - (49 - 0.125T) = 20 \times 2$ $T \cos 30^{\circ} - (49 - 0.125T) = 40$	B1 B1 M1 M1

		A1							
9	(a).	Tallies	f	x	fx	fx^2	C.F	Class	
	20-	///	3	22	,	, , ,	3	boundaries 19.5-24.5	
	24 25-	//// /	6	27	66	1452	9	24.5-29.5	
	29 30-	//// /	6	32	162	4374	15	29.5-34.5	B1 –for classes
	34 35-	++++	10	37	192	6144	25	34.5-39.5	B1 –for
	39	////	8	42	370	13690	33	39.5-44.5	frequencies
	44 45-	/// ///	15	47	336	14112	48	44.5-49.5	B1 –for $\sum fx$
	49	//// ////	10		705	33135		1110 1110	B1 –for $\sum f x^2$
	50- 54	////	12	52			60	49.5-54.5	
	55-	// ////	10	57	624	32448	70	54.5-59.5	
	59 60-	//// //	2	62	570	32490	72	59.5-65.5	
	64 Total		72		124 3149	7688 145533			
	(b). (i).	Mean	200	- 2	$\frac{1}{2} - \frac{\sum f}{2}$	$\frac{x}{x} = \frac{3149}{72}$	– 43	736	M1 A1
		$=44.5,\Delta$			_ ,			c = 49.5 -	
	44.5 = M		$=L_m$	+ (-	Δ_1	c = 44.5	$+\left(\frac{1}{7}\right)$	$\left(\frac{7}{12}\right) \times 5$	M1
		A1							
	(iii). $\sigma = \sqrt{\frac{\sum_{i=1}^{N}}{2}}$	M1 A1							
	(c).	4)	٧	, 2	- (· - /			

	August	106			
	August	186	1055	175.83	
	September	176	1033	173.03	
	September	170	1034	172.33	
	October	170	1001	1.2.00	
			859 + X	859 + X	
	November	159		6	
	December	168			
2017	January	X			
(b). (i)	1				
(0). (1)	1				D 4
220· (000°) 210·			•	• 6-point moving averages	B1 – axes B1 – plotting of original
Monthly sales (shs "000")	\ \ <i>\</i> \	\	•	—• Raw data	data B1 – line for original data
hly sa		11.			B1 – plotting
Would 190		/*.	· 8 I		of moving averages.
180		 \	XY		B1 – trend line for
170	-				moving averages.
160			\sim		B1 – tracing the next
					moving
150	- Mar - Feb	- Jun May	- Oct - Sept	Months of 2016	averages
	is a decreasin	g trend ir	the average	sales during the year	B1 –comment
2016. (ii). Fr	om the graph,				
	0		$\frac{+X}{5} = 168$		M1
		859 +	$X = 168 \times 6$		
		$\times 6 - 85$	9 = 149 thou	sand shillinngs	A1
		n January	2017 is 149 t	thousand shillings (i.e.	
149,00	ιυ/=J.				

11

	X	Y	D	D	d	d^2	
	10	150	<i>R_X</i> 7.5	R_Y	6.5	42.25	B1 –rank X
	140	30	1	7.5	-6.5	42.25	B1 -rank Y
	120	30	2	7.5	-5.5	30.25	B1 -
	100	50	3	6	-3	9	differences
	80	70	4	4.5	-0.5	0.25	B1 $-\sum d^2$
	70	70	5	4.5	0.5	0.25	
	40	90	6	3	3	9	
	10	120	7.5	2	5.5	30.25	
	$\sum x = 570$		7.5		5.5	$\sum d^2 = 163.5$	
	Zx = 370	<u>Z</u> y =010				$\underline{L}u = 105.5$	
	∇_{x}	570			$\nabla u = 6$	310	
	$\overline{x} = \frac{\Delta x}{x}$	$=\frac{370}{2}=71.$	25,	$\overline{y} =$	$\frac{\Delta y}{x} = \frac{\Delta y}{x}$	$\frac{610}{8} = 76.25,$	
	n	$8 \rightarrow (\overline{x})$	v) – (71 74	n	8	B1 -for $(\overline{x}, \overline{y})$
1	.,	$\rightarrow (x,$	y	/ 1, /(
	Ϋ́Υ						
160)-						
	•						B1 –axes
140	1						B2 –all points
							B1 –plotting
120							(71,76)
(1)							B1 –line of
							best fit
100	0=						M1 -
		• \					attempting to
80) _		(71.7	6)			find the value
			×	γ ,			of X.
60							OI A.
60)=						
				X			
40) -				\		
					\	•	
20							
10							
C	0 20	40 60	80	100	120	140 X	
			111111111	1111111111	111111111111111111111111111111111111111	144 144 144 144 144 144 144 144 144 144	
		_				ween X and Y.	
		when $Y =$	75, <i>X</i>	= 71.			A1
(c).		_					
	_ 1	$-\frac{6\sum d^2}{n(n^2-1)}$	_ 1	6 ×	163.5	0.0464	
	$\rho = 1$	$-\frac{1}{n(n^2-1)}$	· = 1 -	8(8	$\frac{1}{(2-1)} =$	-0.9404	M1 A1
Cor		nificant at 19					B1
		/	- (3-1		· -)	
12 (i).							
12 (1).							

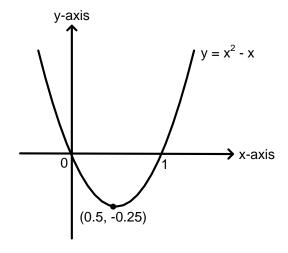
	$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$	M1
	$= {3 - \lambda \choose 2} $ $ \mathbf{A} - \lambda \mathbf{I} = 0$ $(3 - \lambda)(4 - \lambda) - 2 \times 1 = 0$ $12 - 3\lambda - 4\lambda + \lambda^2 - 2 = 0$ $10 - 7\lambda + \lambda^2 = 0$	M1
	$\lambda^2 - 7\lambda + 10 = 0$ sum = -7, product = 10, factors = -2, -5	M1
	$(\lambda - 2)(\lambda - 5) = 0$ $\lambda = 2, \text{or,} \lambda = 5$	A1
	(ii). $ \mathbf{AB} = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 3 & -5 \end{pmatrix} = \begin{pmatrix} -3+3 & 3-5 \\ -2+12 & 2-20 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 10 & -18 \end{pmatrix} \\ \mathbf{BA} = \begin{pmatrix} -1 & 1 \\ 3 & -5 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} -3+2 & -1+4 \\ 9-10 & 3-20 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ -1 & -17 \end{pmatrix} $	M1 A1
	$BA = \begin{pmatrix} 3 & -5 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \begin{pmatrix} 9 - 10 & 3 - 20 \end{pmatrix} = \begin{pmatrix} -1 & -17 \end{pmatrix}$ Comment: $AB \neq BA$.	M1 A1 B1
	(b). let $x = \cos t$ of a shirt and $y = \cos t$ of a tie. x + y = 20500 2x + 3y = 48000 $\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 20500 \\ 48000 \end{pmatrix}$	B1 B1
	$\binom{x}{y} = \frac{1}{3-2} \binom{3}{-2} \binom{-1}{1} \binom{20500}{48000}$	M1
	$= \frac{1}{1} {61500 - 48000 \choose -41000 + 48000} = {13500 \choose 7000}$ $\therefore x = 13500, y = 7000$	M1
	A shirt costs shs. 13,500. A tie costs shs. 7,000.	A1 A1
13	(a). $\frac{dy}{dx} = x - 1$	
	$y = \int (x - 1) dx$ $y = \frac{1}{2}x^2 - x + c$	M1
	$y = \frac{1}{2}x^2 - x + c$ At the point (0, 0), $x = 0$ and $y = 0$.	B1
	$\Rightarrow 0 = 0 - 0 + c, \qquad \Rightarrow c = 0$ $y = \frac{1}{2}x^2 - x$	M1 B1
	The equation of the curve is $y = \frac{1}{2}x^2 - x$.	A1
	(b). Turning point For turning points,	
	$\frac{dy}{dx} = 0$	

$$x-1=0$$

$$x=1$$
when, $x=1$, $y=\frac{1}{2}\times 1^2-1=-0.5$
turning point is $(1,-0.5)$

Nature of turning point

$$\frac{dy}{dx} = x - 1$$
$$\frac{d^2y}{dx^2} = 1$$


 \Rightarrow (1, -0.5) is a minimum point

Intercepts

when,
$$x = 0$$
, $y = 0 - 0 = 0$
when, $y = 0$, $\frac{1}{2}x^2 - x = 0$
 $x^2 - 2x = 0$, $\Rightarrow x(x - 1) = 0$
 $x = 0$, or, $x = 1$

Intercepts are: (0,0), (1,0).

Sketch

(c).
Area =
$$\int_0^6 (x^2 - 1) dx = \left[\frac{1}{3}x^3 - x\right]_0^1 = \left(\frac{1}{3} \times 1^3 - 1\right) - 0 = -\frac{2}{3}$$

Magnitude of Area = $\left|-\frac{2}{3}\right| = \frac{2}{3}$ sq. units

(d). $y = (3x^2 - 1)^5$

$$\Rightarrow \frac{dy}{dx} = 5 \times 6x \times (3x^2 - 1)^4 = 30x(3x^2 - 1)^4$$
$$\int_0^2 x(3x^2 - 1)^4 dx = \left[\frac{(3x^2 - 1)^5}{30}\right]_0^2 = \frac{(3 \times 2^2 - 1)^5}{30} - \frac{(0 - 1)^5}{30}$$

 $=\frac{161051}{30}-\frac{-1}{30}=\frac{26842}{5}=5368.4$

B1

B1

B1

B1

M1 M1 integration & substitution

A1

M1

B1

A1

14	(i). $m = 1 \text{ tonne} = 1000 \text{ kg}, \theta = \sin^{-1}\left(\frac{1}{20}\right) = 2.87^{\circ}, P = 30 \text{ kW} = 30000 \text{ W}, u = 4 \text{ m s}^{-1}$	
	R 1000gcos2.87° 1000g N 2.87°	B2
	$P = F \times u, \qquad \Rightarrow F = \frac{P}{u} = \frac{30000}{4} = 7500 \text{ N}$ Resolving parallel to the plane gives, $F + 10000g \sin 2.87^{\circ} - 2500 = 1000a$ $7500 + 1000 \times 9.8 \times \sin 2.87^{\circ} - 2500 = 1000a$ $5490.686 = 1000a, \qquad \Rightarrow a = 5.491 \text{ m s}^{-2}$ (ii). $u = 4 \text{ m s}^{-1}, s = 25 \text{ m}, a = 5.491 \text{ m s}^{-2}$ $v^{2} = u^{2} + 2as = 4^{2} + 2 \times 5.491 \times 25 = 290.55$ $v = \sqrt{290.55} = 17.046 \text{ m s}^{-1}$ (iii). $v_{1} = 10 \text{ m s}^{-1}$	B1 M1 M1 A1 M1 M1 M1 M1 A1
	1000gcos2.87°	B2
	Resolving parallel to the plane gives,	

$F = 10000g \sin 2.87^{\circ} + 2500 = 1000 \times 9.8 \times \sin 2.87^{\circ} + 2500$	M1
= 2990.686 N	B1
$P_1 = F \times v_1 = 2990.686 \times 10 = 29906.86 \mathrm{W}$	M1 A1

END