P425/1

PURE MATHEMATICS

PAPER 1

June/July 2017

3 hours

UACE RESOURCE MOCK EXAMINATIONS 2017

PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

Answerall the eight questions in section A and five questions from section B

Any additional question(s) answered will not be marked

All working must be shown clearly

Begin each question on a fresh page

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 MARKS)

1. (a) Simplify
$$\frac{(4.2^{n+1}-2^{n+2})}{(2^{n+1}-2^n)}$$
 (03 marks)

(b) Show that
$$\log (100-y^2)=2+\log (1-\frac{y^2}{100})$$
 (03 marks)

- 2. By using y = mx, solve the equations: $x^2 y^2 = 3$, $2x^2 + xy 2y^2 = 4$ (05 marks)
- 3. Prove that $4\tan^{-1}\left(\frac{1}{5}\right) \tan^{-1}\left(\frac{1}{239}\right) = \frac{\pi}{4}$. (05 marks)
- 4. Differentiate xlog_e x with respect to x hence evaluate $\int_{1}^{2} \log_{e} x \, dx$ (06 marks)
- 5. The first three terms of in the expansion of $(1+kx)^n$ in ascending powers of x are

$$1-6x + \frac{33}{2}x^2$$
, find the values of k and n. (04 marks)

- 6. Find a vector perpendicular to the vectors $\mathbf{a} = 2\mathbf{i} \mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$. (05 marks)
- 7. Water is emptied from a cylindrical tank of radius 20 cm at the rate of 2.5 litres per second and fresh water is added at the rate of 2 litres per second. Determine the rate at which the water level in the tank is changing.).
 (05 marks)
- 8. A is a point (0,4). P is a variable point such that it's distance from A is twice it's distance from the line 3x = 4y. Find the locus of P. (05 marks)

SECTION B (60 MARKS)

9. (a) Show that
$$i^9 + 2i^{11} + i^{13} = 0$$
. (04 marks)

(b) If
$$z_1 = 1 + i\sqrt{3}$$
 and $z_2 = \sqrt{3} + i$, represent $\frac{z_1}{z_2}$ on an argand diagram. (03 marks)

- (c) Given that Z = 1 + i is a root of the equation $z^4 4z^3 + 3z^2 + 2z 6 = 0$. Find the other roots. (05 marks)
- 10. (a) Angles A and B are both obtuse angles. Given that $sin A = \frac{5}{13}$ and $cos B = -\frac{3}{5}$, find tan (A-B).
 - (b) If $\tan \theta = \lambda \tan (A \theta)$ show that $(\lambda-1)\sin A = (\lambda+1)\sin (2\theta-A)$. (07marks)
- 11. The points P(1,3), R(4,-5) and Q(9,-1) are on the vertices of a triangle PQR.

Find the equation of the

- (a) circle and hence state its radius and the coordinates of the centre. (08 marks)
- (b) tangent to the circle at the point Q. (04 marks)
- 12. (a) Differentiate the following functions with respect to x.

(i)
$$\frac{\sqrt{x}}{x-2}$$
 (03 marks)

- (ii) 2x^{x²} (04 marks)
- (b) Find the first three terms of the expansion $\frac{1}{x+1}$ using Maclaurin's theorem. (05 marks)
- 13. (a) Find the point of intersection between the lines x-2=2y+1=3-z and the plane x+2y+z=3. (04 marks)
 - (b) Show that the points with position vectors $\mathbf{OA} = 4\mathbf{i} 8\mathbf{j} 13\mathbf{k}$, $\mathbf{OB} = 3\mathbf{i} 2\mathbf{j} 3\mathbf{k}$ and $\mathbf{OC} = 3\mathbf{i} + \mathbf{j} 2\mathbf{k}$ are vertices of a triangle ABC. (04 marks)
 - (c) Find the equation of a plane through the origin parallel to the lines $r_1 = 3i + 3j k + m(i-j-2k)$ and $r_2 = 4i 5j 8k + t(3i+j-2k)$; m and t are scalars.

(04 marks)

14. (a) Express
$$\frac{2x^4-3x^3+7x^2-8x+5}{(x-1)^2(x^2+2)}$$
 into partial fractions. (07 marks)

(b) Hence find
$$\int \left(\frac{2x^4-3x^3+7x^2-8x+5}{(x-1)^2(x^2+2)}\right) dx$$
 (05 marks)

- 15. A curve is given by $y = \frac{(x+1)(x-3)}{x(x-2)}$.
 - (i) Show that for real x, y cannot be between 1 and 4. (04 marks)
 - (ii) Hence determine the turning points and distinguish them. (04 marks)
 - (iii) State the asymptotes and the intercepts of the curve. (03 marks)
 - (iv) Hence sketch the curve. (03 marks)
- 16. (a) Solve the differential equation: $x^2 \frac{dy}{dx} = x^2 + xy + y^2$. (04 marks)
 - (b) When a murder is committed, the body originally at 37° C, loses heat at a rate proportional to the difference between the body temperature, H and the surrounding temperature, H_o. Suppose that after two hours the temperature is 35° C, and that the temperature of the surrounding air is a constant 20° C. If the body is found at 4:00 pm having a temperature of 30° C, estimate the when the murder was committed.

(08 marks)

END