TORORO GIRLS' SCHOOL SENIOR SIX CHEMISTRY PAPER ONE 2 HOURS

Attempt all questions

1.	(a)	group	o(VII) of the	periodic table.	ıs behavior of fluori	(3 marks)
	••••••	•••••				
•••••	••••••	•••••				
	(b)				oetween fluorine an	
•••••		(i)	-	potassium hydroxi	de solution.	(1 ½ marks)
		(ii)			ydroxide solution.	
	6.34cı	m³ of h	nydrogen gas brium was es	were mixed with 7	7.61cm³ of chlorine ³ of hydrogen chlori	gas at $200 { m K}$ and
••••		(i)	the equation	n for the reaction t	hat took place.	(1 ½ marks)
		(ii)	the expression	on for the equilibi	rium constant, K c o	f the reaction. (1 ½ marks)

(b	o) Ca	alculate the equilibrium constant $\mathbf{K}\mathbf{c}$ for the reaction at $2\mathbf{c}$	00 K .
			(3 marks)
• • • • • • • • • • • • • • • • • • • •	•••••		•••••
• • • • • • • • • • • • • • • • • • • •	•••••		
• • • • • • • • • • • • • • • • • • • •	•••••		•••••
•••••			•••••
•••••	•••••		••••
0 D			
		reacts with chloromethane to form methylbenzene. e an equation and a mechanism for the reaction between	
(a		pethane and benzene	(2 marks)
•••••	•••••		
•••••	•••••		••••••
• • • • • • • • • • • • • • • • • • • •	•••••		
•••••	•••••		•••••
• • • • • • • • • • • • • • • • • • • •	•••••		
(h) The c	ubstitution reaction occurs more readily with a phenol tl	aan with
()	benze		ian with
	(i)	State and explain why the substitution reaction occurs r	nore readily
		with phenol compared to benzene.	(2 marks)
• • • • • • • • • • • • •	•••••		•••••
•••••	•••••		
•••••	•••••		•••••
	(ii)	suggest a structure for the most likely organic product for	ormed in the
	(11)	substitution reaction of a phenol with excess chloromet	
			(1 mark)
•••••	•••••		•••••

4. Lithium, a group (I) element and diagonal relationship.	d magnesium a group (II) e	lement show
(a) What is meant by diagonal re	elationship?	(1 mark)
(b) State two properties in which	ı lithium resembles magnes	ium. (2 marks)
(c) Suggest one pair of elements	which show diagonal relati	onship. (1 mark)
5. draw and name the structures of	f the following molecules or	ions. (4 ½ marks)
Molecule/ ion	structure	Name
Water		
Sulphate		
nitrite		

6. The boiling points of the hydrides of group(VII) elements of the periodic table are given below.

Hydride	HF	HCl	HBr	HI
Boiling point (°C)	+19.5	-85	-67	-37

		(a)	State how the boiling points of the hydrid	les vary.	(1 mark)
		(b)	Explain your answer in (i)		(3 marks)
•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	
•••••	••••••	••••••		•••••	•••••
7.	The a 4.9 × (i)	acid dis 10 ^{–10} Write	essociation constant, K_a , of hydrocyanic acid $moldm^{-3}$. The an expression for the acid dissociation contains a specific contains a specif	l, HCN, is	for HCN. (2 marks)
	(ii)		alate the pH of a 0.010M solution of hydro	ocyanic acid	l, HCN. (3 marks)
•••••					
•••••					
•••••	•••••••	••••••		••••••	••••••

8.	(a)	Define bond energy.	(2 marks)

(b) Calculate the standard enthalpy of formation of ethane using the following information.

The standard enthalpy of atomization of carbon is 718kjmol⁻¹.

bond	Bond energy/ kjmol ⁻¹
C-C	348
С-Н	416
Н-Н	436

(3 marks)

9. A senior six student decided to investigate the reactivity of the hydroxyl group in the three different organic compounds shown below.

Phenylmethanol 4-Methylphenol

(a) Benzoic acid reacts with aqueous sodium hydroxide:

(i) Write the equation for the reaction between sodium hydroxide and benzoic acid. (1 ½ marks)

.....

••••	(ii)	State which, if any, of the two compositions aqueous sodium hydroxide.	(1 mark)
	(b) All th Writ meta	he three compounds react with sodium te an equation for the reaction between tl.	n metal to give off hydrogen gas n 4-methyphenol with sodium (1 ½ marks)
••••	(c) Benz a sui betw	zoic acid and phenylmethanol react wit table catalyst. Write an equation and a een benzoic acid with 4-phenylmethan	th each other in the presence of mechanism for the reaction ol. (5 marks)
••••			
	compos	omeric aromatic compounds X and Y has ition by mass. $C = 66.4\% H = 5.5\%$ ulate the empirical formula of the com	and $Cl = 28.1\%$.
••••			
••••	••••••		
••••	•••••		

1.418°C. Det	ther X lowers the termine the molecular	ular mass o	f X.	(2	2 marks)
				•••••	••••••
(c) Compound 2 nitrate, while structure for	X yields a white pr Y does not. Sugge Y.	ecipitate wl est a structu	nen warme ire for X ar	d with aque nd give one (3 mark	eous silver possible s)
and aqueous	nation and suggest sodium hydroxido	е.		(3 mark	s)
11.(a) The satur	rated vapor pressu are shown below.				
Temperature/°C		70	80	90	100
Vapor pressure (10 ⁵ Nm ⁻²)	Phenylamine	0.0141	0.0242	0.0584	0.0605
	water	0.311	0.423	0.679	1.010

(i) By means of a graph find the temperature at which a mixture of phenylamine and water boils at $1.01 \times 10^5 Nm^{-2}$. (4 marks)

	•••••
	••••••
(ii) Calculate the percentage composition of phenyl am	ine in the
distillate.	(2 marks)
	•••••
	•
	••••••••••
(b) The liquid A distills in steam. At the boiling point, the partial	-
the two liquids are: $A = 6.59 \times 10^3 Nm^{-2}$ and $H_2O = 9.44$	
If the molar mass of A is 95gmol ⁻¹ . What is the percentage by the distillate?	(3marks)
	•••••
10 () () XX () 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C
12.(a) (i) Write the name and the formula of the principal or aluminium.	e oī (1 mark)
	(1 111111)
(:) O-4:	1 : (:)
(ii) Outline the steps used to concentrate the ore you have national (include relevant equations for the reactions that take place)	med in a(i) (5 marks)
	,
	••••••

(b)	Writ	e equa	ation(s) for the reaction of aluminium v	vith;
	(i)	conc	centrated sodium hydroxide solution	(1 mark)
	(ii)		ed iron(III) oxide	(1 mark)
	(iii)		centrated hydrofluoric acid	(1 mark)
-	•	onation	en bromine is reacted with hot aqueous n occurs. What is meant by the term dispropo	rtionation. (1 mark)
		(ii)	Write an equation to show how brondisproportionation.	
••••••	•••••	(iii)	State the change in oxidation states or reaction above.	(½ marks)
		(i)	ain each of the following: Chlorine is much more soluble in ach hydroxide than in water.	jueous sodium (3 marks)
		(ii) wate	Unlike other halogens fluorine libera er.	ates oxygen from cold (3 marks)
•••••	•••••			•••••

14.	(a) State	e three propert	ies of eu	tectic n	nixture			(1 ½	marks)
•••••	•••••		•••••	•••••	•••••	•••••	••••••	•••••	•••••••
••••••	(b)	The melting			ures of	ethano	ic acid	and wa	ter are
	% ethano		0	20	40	60	80	100	
	Melting 1	point (°C)	0	-10	-20	-19	-1	18	
		(i) Draw ethenoic acid	a well la d-water s		nelting]	point-c	ompos		⊐ ngram o narks)
••••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••	••••••	••••••
· • • • • • • • • • • • • • • • • • • •	•••••	•••••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
••••••	••••••		•••••	•••••	••••••	••••••	••••••	•••••	••••••
		(ji) Deter	mine the	e eutect		erature	and c	omposi	ion of
••••••		(ii) Deter	mine the	e eutect	ic temp	erature	and c		ion of
				e eutect	ic temp	erature	and c		
				e eutect	ic temp	erature	and c		
				e eutect	ic temp	erature	and c		
				e eutect	ic temp	erature	and c		
	o li o	the eutectic	late the	mass of	ice that	crystal	llized o	out when	nark)

	(c)		ain what happens when a liquid mixture of a 20% ethanoic acid at 15°C was cooled to -30°C.			
		composition 20% etha	moic acid at 15 C wa	(2 marks)		
				,		
•••••	•••••	••••••	•••••	••••••		
••••••	•••••	•••••				
•••••	•••••					
•••••	•••••					
15. B ar	ium su	lphate sparingly dissolve	s in water:			
(a)	Write:					
(a)	(i)	The equation for the so	slubility of borium su	Ilphata in water		
	(1)	The equation for the se	nubility of partuin se	<u>-</u>		
				(1½ marks)		
•••••	•••••	•••••	•••••	••••••		
	(iii)	The expression for th	e solubility product ((\mathbf{K}_{sp}) of barium		
		sulphate.		(1 mark)		
(b)	A sa		m sulphate has elect			
(b)	A saturated solution of barium sulphate has electrolytic conductivity of 3.73 ×10 ⁻⁶ ohm ⁻¹ cm ⁻¹ at room temperature. Calculate the solubility of barium sulphate in g/dm³ at this temperature					
(The elect		conductivity of pure water		cm ⁻¹ and the molar		
		arium sulphate at this ter		$cm^2 mol^{-1}$)		
				(2½ marks)		
•••••	•••••	•••••	•••••	••••••		
			•••••			
	•••••		•••••			
	/-					
•••••	•••••	••••••	•••••	•••••		

	(c)	(1)	•	02M aqueous solution of sodium sulphate was added to the irated solution in (b). Calculate the percentage of barium		
			sulphate dissolved.		(2½ marks)	
	•••••	•••••				
•••••	•••••	•••••				
		answer.		esults in (c)(i) above and give a reason for your (1½ marks)		
•••••	•••••	•••••				

END