P525/1
CHEMISTRY
Paper 1
2018
2 ¾ Hours

RESOURCE EXAM 2018 Uganda Advanced Certificate of Education CHEMISTRY

Paper 1

Time: 2 Hours 45 Minutes

INSTRUCTIONS TO CANDIDATES

- Answer all questions in section A and six questions from section B.
- All answers MUST be written in the spaces provided.
- Illustrate your answers with equations where applicable.
- Molar gas constant, $R = 8.314 \text{Jmol}^{-1} \text{K}^{-1}$
- Molar volume of gas at s.t.p is 22.4litres

	For Examiner's use only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

a) Define the term '	"osmotic pressure".		(01 mark)
		· ··· ··· ··· ··· ··· ··· ··· ··· ···	
	ssure of an aqueous solution which at 15°C. Calculate the degree of d		
			(3½ mari
		· ··· ··· ··· ··· ··· ··· ··· ··· ···	
The standard electr	ode potentials of some half cells a	are shown below;	
The standard electr	ode potentials of some half cells a		
The standard electr		E°/V	
The standard electr	Ce $^{4+}_{(sq)}$, Ce $^{3+}_{(sq)}$ / Pt $_{(s)}$	$E^{ \mathbf{o}} / V$	
The standard electr		E°/V +1.61	
	Ce $^{4+}_{(sq)}$, Ce $^{3+}_{(sq)}$ / Pt $_{(s)}$	E°/V 1.61 1.66	(1½ mark
	$Ce^{4+\atop (sq)}$, $Ce^{3+\atop (sq)}$ / $Pt_{(s)}$ $Al^{3+\atop (sq)}$ / $Al_{(s)}$	E°/V 1.61 1.66	(1½ mark
	$Ce^{4+\atop (sq)}$, $Ce^{3+\atop (sq)}$ / $Pt_{(s)}$ $Al^{3+\atop (sq)}$ / $Al_{(s)}$	E°/V 1.61 1.66	(1½ mark
	$Ce^{4+\atop (sq)}$, $Ce^{3+\atop (sq)}$ / $Pt_{(s)}$ $Al^{3+\atop (sq)}$ / $Al_{(s)}$	E°/V 1.61 1.66	(1½ mark
a) Write the cell o	$Ce^{4+\atop (sq)}$, $Ce^{3+\atop (sq)}$ / $Pt_{(s)}$ $Al^{3+\atop (sq)}$ / $Al_{(s)}$	E°/V 1.61 1.66	
a) Write the cell o	$Ce_{(sq)}^{4+}$, $Ce_{(sq)}^{3+}$ / $Pt_{(s)}$ $Al_{(sq)}^{3+}$ / $Al_{(s)}$ concentration for the combined ce	E°/V 1.61 1.66	

(i) reaction at the positive electrode.	(01
mark)	
	······································
(ii) reaction at the negative electrode.	(01
mark)	
(iii) overall cell reaction.	(01 mark)
c) Calculate the e.m.f. of the combined cell.	(01 mark)
	, ,
3. a) Complete each of the following equations	
(i) CH ₃ COCH ₂ CH ₃ + NH ₂ QH H →	
(01 mark)	

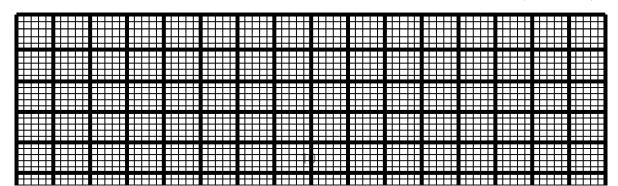
(ii)	0	COOH	+ CH Heat		(01 mark)
(iii)	nCH ₂ =CH - C=		CH ₂		(01 mark)
(iv).	(CH₃)₃C	Br	+ — OH(Heat		(01 mark)
b) Sta	ate the mechanism	of the re	eaction in a(iv)		(01 mark)
resulting	equation for the re solution will be ne uminium chloride	action fo		s with water.	State whether the (02 marks)
	mmonium methano				(02 marks)
c) So	odium sulphate				(01 mark)
·					

Name the reagent(s) that can be used to distinguish between each of	of the following pairs
compounds and state what would be observed if each member of the p	nair is treated
with the reagent(s).	an io treated
a) COCH ₂ CH COCH ₃ and	
(2½ marks)	
Reagent(s)	
Observation(s)	
b) Puth 1 of and 2 mathylpropan 2 of	(2 ½
b) Butn- 1- ol and 2- methylpropan- 2- ol marks)	(2 72
The Koj	
Reagent(s)	
Observation(s)	
6. a) Define the term "Bond energy"	(01 mark)
o. a, beand the term bond therey	(OT Mark)

b) Some bond	Bond	Bond energy (kJmol ⁻¹)	
	DONG	Bond energy (Karlor)	
	н— н	436	
	N — H	389	
	N N	159	
	$N \equiv N$	946	
N _{2(g)} +	2H _{2(g)} →	to the following equation to form hydrazine. (the heat of formation of hydrazine. (
V _{2(g)} +	2H _{2(g)} →	$NH_2NH_{2(1)}$	
N _{2(g)} +	2H _{2(g)} →	$NH_2NH_{2(1)}$	
N _{2(g)} +	2H _{2(g)} →	$NH_2NH_{2(1)}$	
N _{2(g)} +	2H _{2(g)} →	$NH_2NH_{2(1)}$	

	Species	Shape	Name	
3.		ed by the following species and		(06 marks)
	c) The dissociation co	nstant, Ka of the acid.		(1 ½ marks)
	rks)			•
k	b) the pH of the solution	on.		(1 ½
	a) the degree of dissoc			(2½ marks)
3.9	11 x 10 ⁻² Sm ² mol ⁻¹ . Calc		ution at this temper	atul e 15
25°		ty of ethanoic acid at infinite dil	ution at this temper	aturo ie
		ethanoic has an electrolytic cond	ductivity of 5.21 x 1	0 ⁻² Sm ⁻¹ at
		······		

	PCl₅		
	SO ₂		
	SO 4-		
	CIO ₃		
	Write equations of read a) Lead (IV) oxide r ks)	ction between hot concentrated	d sodium hydroxide solution and (1 1/2
b)	Aluminium (III) oxide		(1 ½ marks)


c) Iodine				(1 ½ marks)
, -	eacts wit	h hydrogen accordin	g to the following equa	ation.
Equation;	., +	3H ₂ ⊕	2NH _{2(a)}	H = ⁻ 92kJmol ⁻¹
				11 - 92KGHOI
	i expi essi	on for the equilibrium	ii constant, Kp.	(72
mark)				
	• ••• ••• ••• ••			
••• ••• ••• ••• ••• •••	• ••• ••• ••• •••	· ···		
pressure of 80 at by volume.	mosphere	-	drogen were heated a xture was found to con	
Calculate	ne value (or Kp under these co	iluitions.	(04
marks)				
	• ••• ••• ••• ••			
	easons, ho	ow the partial pressu	ire of ammonia would	be affected if at
equilibrium.		ow the partial pressu	ire of ammonia would	be affected if at

marks)	
	··· ··· ··· ··· ··· ··· ··· ··· ··· ··
(ii) the pressure was increased.	(1½ marks)
(iii) Iron was added.	(1 ½ marks)

11. The boiling points and molecular masses of the hydrides of elements is group (II) in the periodic table are given in the table below.

Hydride	HF	HCI	HBr	HI
Boiling point (°C)	19.5	⁻ 85	⁻ 67	⁻ 35
Molecular mass	20	36.4	80.9	128

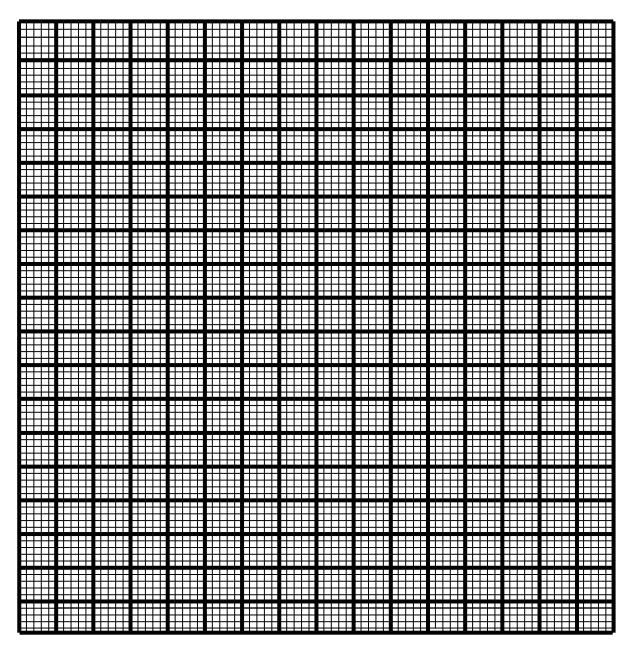
a) Draw a graph of boiling point versus molecular mass of the hydride. (03 marks)

b) Explain;	
(i) the abnormally high boiling point of HF.	(2 1/2
marks)	
	·
	·

(ii) the general trend in the boiling points of HCl, HBr and HI	(1½ marks)
	··· ··· ··· ··· ··· ··· ··· ··· ··· ··
c) State what would be observed and write equation for the reaction the	nat takes place if
concentrated sulphuric acid is added to hydriodic acid.	
(i) Observation	(½ mark)
(ii) Equation	(1 ½ marks)
12. Complete the following reactions and suggest mechanisms of reacti	on.
a) NHCH ₂ + (CH ₃ C(*) ₂ O	
(03 marks)	

13. a)	State two properties in which chromium differs from aluminium.	(01 mark)
b) \	Write equation for the reaction between chromium and	
	(i) dilute sulphuric acid.	(01 mark)
(i	i) hot concentrated sulphuric acid.	(1 ½ marks)
		··· ··· ··· ··· ··· ··· ··· ··· ··· ··

	omium (III) sulphate solu				solution	
	ise until in excess followe oservation	ed by hydroge	en peroxide solut	ion.	(1 ½ ma	nrke)
O.						
						••• •••
_				(0.4		
Equa	ation(s)			(04 n	narks)	
						••• •••
						•••••
14. a)	State three reasons why	azeotropes a	re considered to	be mixtures an	d not	
compo	unds.			(1 1/2	marks)	


c) State what would be observed and write equation(s) for the reaction that takes place if

•••	••••	•• •••	••••	•••	••••	• •••	•••	•••	••••	••••	••••	••••	••••	••••	••••	••••	••••	 • ••	• • • • •	• • • • •	•••	•••	•••	•••	•••	•••	•••	••••	••••	••••	••••	 ••••	••••	••••	• • • •	• • • • •	•••	•••

b) The total pressure of a mixture of propanone and trichloromethane and the mole fraction of propane at constant temperature are given in the table below.

Mole fraction of propanone	0.0	0.2	0.4	0.6	0.8	1.0
Total vapour pressure of the mixture	293	256	244	267	305	347

(i) Plot a graph of total vapour pressure of the mixture against the mole fraction of propanone. (03 marks)

(ii) Use the graph to deduce how the mixture deviates from Raoult's	s law. Give a reason for
your answer.	(02 marks)
(iii) Explain the causes of deviation you have stated in b(ii).	(1 ½ marks)
(iv) Determine the composition of the azeotrope.	(01 mark)

	rite equations for the reactions which take place and in each case, stat	e what would
be obs		
	Concentrated ammonia solution is added drop wise until in excess to a	-
solution	n of cobalt (II) sulphate and the resulting solution allowed to stand in a	
		(04 marks)
	Equation(s)	
		••• ••• ••• ••• •••
	Observation(s)	
b)	Aqueous potassium iodide is added to acidified potassium dichromate (IV).
		(2 ½ marks)
	Equation(s)	
	Observation(s)	

		• ••• • • • • • • • • • • • • • • • • •
		•• ••• •••
c) marks)	Magnesium powder is added to aqueous solution of Iron (III) chloride.	(2 ½
	Equation(s)	
(Observation(s)	
		• • • • • • • • • • • • • • • • • • • •
16. The	e solubility product of lead (II) sulphate is $1.5 \times 10^{-4} \text{ mol}^2 \text{ I}^{-2}$.	
a)	(i) Write the expression for the solubility of lead (II) sulphate.	(1 ½
marks)		
	(ii) Write the expression for the solubility product of Lead (II) sulphate.	(01
mark)		

·
· ••• ••• •••
••• ••• •••
•••••
ad (II)
? marks
? marks

marks)	
17. a) An aqueous solution containing 3.6g of a non-cyclic compo	ound R in 125g of water
freezes at $^{-0.744}$ ° C. The freezing point constant, K _f for water	
Calculate the molecular mass of R.	(2 ½ marks)
b) If R contains carbon, 66.7%, hydrogen 11.1% and oxygen 22.3	
(i) Calculate the simplest formula of R (C = 12, H = 1, O = 7 marks)	16) <i>(02</i>
That Noy	
··· ··· ··· ··· ··· ··· ··· ··· ··· ··	

(ii)	Determine the molecular formula of R.	(01 mark)
	······································	·· ··· ··· ··· ··· ··· ··· ··· ··· ···
		······································
(iii)	Write the structures of three possible isomers of R.	(1 ½ marks)
		·· ··· ··· ··· ··· ··· ··· ··· ···
	c) R forms a yellow precipitate with phenyl hydrazine and iodine solut	tion in presence
of		
sodium	n hydroxide solution.	
	(i) Identify R.	(1/2
mark)		
	(ii) Write an equation for the reaction between R and phenyl hydra	zine. (1½
marks)	
		·· ··· ··· ··· ··· ··· ··· ··· ··· ···

•••	•••	••	• •	•••	•••	• ••	• •	••	•••	•••	••	٠.	••	•••	•••	••	• •	••	•••	• •	••	•••	•	••	••		••	••	•	•••	•	••	••		••	••	٠.	••	••		•••	••	•	••	••		••	•••	••	• •	••	•••	• •	••	•••	••	• •	••	•••	••	• •	••	•••
•••	•••		•	•	•••			••	•••	•••	•	•		•••	•••	•		•••	•••		••	•••		•		• •	•••	•	•			••	•	•	••	•••	•	•••	•	•				•	•	•	••	•••	•		•	•	•		•••	••	• •	••	•••		•	••	•••
	•••	•••		•••	•••			••	•••	•••	•••		••	•••	•••	••		••	•••		••	•••		••	••		••	••		•••		••	••		••			•••	••		•••			•••	••		••	•••			••	•••			•••			••	•••			••	•••
•••	•••	•••	• •	•••	•••	• • •	• •	••	•••	•••	••	• •	••	•••	•••	••	• •	••	•••	• •	••	•••	•	••	•••	• •	••	••	•	•••	•	••	•••	• •	••	••	• •	••	•••	• •	•••	••	•	•••	••	• •	••	•••	••	• •	••	•••	• •	••	•••	••	• •	••	•••	••	• •	••	••
					•••				•••										•••			•••																										•••															

END