P525/1 CHEMISTRY PAPER 1 April 2014 2½ hrs

UGANDA ADVANCED CERTIFICATE OF EDUCATION PRE MOCK EXAMINATIONS CHEMISTRY PAPER 1

Time: 2hours 30minutes

Instructions

Answer **all** questions
All questions must be answered in the spaces provided
1 mole of a gas occupies 22.4dm³ at S.T.P
1 mole of a gas occupies 24dm³ at room temperature.
Molar gas constant is 8.314 Kj mol⁻¹ K⁻¹

a) Excess chlorine is dissolved in aqueous sodium thiosulphate solution.			
	(2 ½ marks)		
Observation:	· ··· ··· ··· ··· ·		
Equation			
b) 2-3 drops of aqueous sodium bicarbonate are added to eth Observation:	nanoic acid. 		
Equation			
2. a) Explain what is meant by the complex ion.	(1mark)		
b) Name the following complex ions and in each case the oxi	dation state of centre		
metal atom.	(1½ marks)		
$i) Zn \left(OH\right)_{4}^{2-}$			
Name;			
Oxidation state of central atom;			
$ii) [CoCl_{2}(NH_{3})_{4}]^{+}$			

1. State what would be observed and in each case write equation for the reaction that

takes place if,

Name;			· ···
Oxidation state of central atom;			
iii) Ni (CO) ₄			
name;			
oxidation state of central atom.			
c) Explain why transition metals form o	complex ions);	(1 ½ marks)
		· · · · · · · · · · · · · · · · · · ·	
O. The atendend neduction alcetuade ned	amtiala fan a	anaa balf aall w	
3. The standard reduction electrode pol	entials for so	ome nan cen r	eactions are given
below.	2 2 +	E ⁰ /v	
$Sn_{(aq)}^{2+} + 2e^{-}$			
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$	2 Cr 3+ (aq)+	$-7H_{2}O_{(1)}+1.33$	
a) Write the cell notation for the cell fo	ormed when		
		(1ma	•
			· ···
b) Write equation for the reaction that	takes place a	at the;	(2marks)
anode;			• • • •
		••• ••• ••• ••• ••• •••	
Cathode			
c) Claculate the e.m.f of cell.			(1½ marks)
		••••••••••	
d) State whether the cell reaction if fe	easible or not	tand give a re	-
answer.			(1mark)

4. Write equation for t	he reaction which tal	kes place when each of the following
-		ase state whether the resultant solution is
neutral, acidic or alkali	ne. (2 marks	s each)
a) sodium methanoate.Equation		
	······································	······································
		···········
b) Disodium hydrogen	nhoenhata	
Equation Equation	рпоѕрпасе	
		·· ··· ···
c) sodium sulphate		
Equation		
		·· ··· ···
5. Complete the follow	ing reaction equation	s and write the accepted mechanism.
		(2marks each)
a) $CH_3C \equiv CH$	H_2O $H_2SO_4/HgSO_4)$, Heat 6	000
	H ₂ SO ₄ /HgSO ₄) , Heat 6	00 C

b) CH ₃ CHO + Na ₂ SO ₃	H ⁺	→	
6. a) State conditions for the equation for each reaction. i) Water; condition(s)	(2	tmarks each)	
Equation;			
b) State two properties in v			 (2marks)
7. a) Explain what is meant			 (1mark)
b) State three factors that o	can affect molar condu	uctivity.	 (1½ marks)

acid at 25°C are 3.91 x 10 ⁻² Sm ² mol ⁻¹ and 5.21 x 10 ⁻² Sm ⁻¹ respectively. Calculate the
degree of dissociation of ethannoic acid. (2 ½ marks)
8. Name the reagent(s) that can be use to distinguish between the following pairs of
compounds. In each case state what is observed if a member of the pairs is separately
treated with the reagent. (2 ½ marks each)
a) CH₃COOH and HCOOH.
Reagent(s)
Observation(s)
b) CH ₃ CHO and CH ₃ CH ₂ CHO
Reagent (s)
Observations

9. 20cm³ of a gaseous hydrocarbon X was exploded with 100cm³ of oxygen. After the

explosion the volume of the residue gas was found to be 90cm ³ . On	addition of
concentrated potassium hydroxide to the residual gas the volume dec	creased to 50cm ³ .
a) Determine the molecular formula of X.	(2marks)
b) X reacts with ammoniacal copper (I) chloride I, state what is obse	erved.
	(½ mark)
ii) Write equation for the reaction that takes place. (1mark)

SECTION B

(Attempt only \mathbf{six} questions from this section)

10. A calcium salt Y contains, 31.25% carbon, 3.75% hydrogen a	and 40% oxygen the
rest being calcium.	
a) calculate the;	(0.4)
i) empirical formula of y.	(2 ½ marks)
ii) molecular formula of Y (molar mass of Y = 158)	
b) Y decomposes on heating to a white solid Z and liquid W. R re	
excess sodium hydroxide solution forming a yellow precipitate bu	t does not react with
acidified potassium dichromate solution. Identify Z, W and the ye	llow precipitate.
(1½ marks)	
Z	
W	
Yellow precipitate	··· ··· ·
c) Write equation for the reaction that takes place between W ar	nd iodine solution in
aqueous sodium hydroxide. (1mark)	
	
d) Write a mechanism for the reaction between W and hydrazine	<u>.</u>
	(2 ½ marks)

11. Lead (II) fluoride is sparingly soluble in water. a) Write the;	
i) equation for the solubility of lead (II) fluoride in water.	·
ii) expression for the solubility product constant (K _s).	(1mark)
b) The maximum amount of lead (II) fluoride that will dissolve of water. Calculate the solubility product for lead (II) fluoride a	e at 20°C is 0.466gdm ⁻³
(2	
	·
	·
	·
c) When 0.02 moldm ⁻³ solution of lead(II) nitrate is added to a lead(II) fluoride precipitates out. Calculate the;	solution in (b) some
i) mass of lead (II) fluoride precipitated.	(2 ½ marks)

ii) concentration	of fluori	ide ions left in solution. (1½ m	arks)
12. Write equatio	ns to sh	how how the following conversion can be effected.	
a) HC≡CH	to	C/ C C/ C/)
b) CH ₃ CH ₂ OH		CH ₃ CH ₂ CH ₂ NH ₂	

c) to	
13. a) Explain what is meant by the term thermosetting plastic. (1m	nark)
ii) Name one thermosetting plastic.	(½ mark)
b) The structural formulae of some polyments are given in the table hal	For sock

b) The structural formulae of some polymers are given in the table below. For each polymer write the name of monomer(s) used to preparer the polymer.

(2 ½ marks)

Polymer	Name of monomer (s)
i) — CH ₂ — CH n	
$ \begin{array}{c} \text{ii)} \\ -CO_2CH_2CH_2C \\ \end{array} $	
iii) _O II C + CH ₂) ₄ -CO NH(CH ₂) ₆ - NH n	

c)	Α	synthetic	polymer	has	the	structur	(
----	---	-----------	---------	-----	-----	----------	---

9. 89 x 10 ⁻² mole of polymer was formed Calculate the;	when 350g of monomer was polymerized.
) value of n	(2½ marks)
i) molar mass of polymer.	(1 ½ marks)
d) State one application of the polymer in	
14. a) State three reasons why fluorine di	iffers in some of the properties from the rest
of group (VII) elements.	(1½ marks)

i) dilute	rks)
	·
ii) concentrated	·
c) Write equation for the reaction between hydrogen fluoride and	 silicon. (1½ marks)
	·
d) Explain why hydrogen fluoride is a weaker acid than hydrogen	 chloride. (3marks)
15. State what was observed when the following mixtures are hea write the equation for the reaction that would take place.	ted and in each case
a) Benzoic acid and neutral iron(III) chloride solution. (2 ½ Observation	
Equation	

b) Methanol and propanoic acid in t	the presence o	of concentr	ated sulp	huric acid.	
			(2 ½ r	marks)	
Observation;					
Equation;					
	••• ••• ••• ••• ••• ••• •	•• ••• ••• ••• •••	••• ••• ••• •••	•	
			••• ••• •••		
c) Methanoic acid and ammoniacal	silver nitrate	solution.	(2mark	(s)	
Observation					
Equation					
			••• ••• •••		
d) ethanol and iodine in aqueous so Observation	aium nyaroxic	e solution.	(2mark	.S)	
Observation					
Equation					
16. a) State three factors that can	affect hydratio	on energy.	((1 ½ marks)	
b) The table below shows the entha	alpies of hydra	ation of cat	ions of g	group(II) ele	ments
of the periodic table. Cation	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	7
CaliOH	ivig	∪a	SI	Da	

(kJmol ⁻¹)					
i) State how hydration energy of th	ne cations vary	/. 		lmark)	
ii) Explain your answer in b(i) abov			(2	2marks)	
iii) Explain why the values for hydr	ration energy	are negativ		Imark)	
c) The values for some energy cha	nges are giver	n below. Energ			
Lattice energy of CaCl _{2(s)}	- 2	2230	Ю <i>)</i>		
Enthalpy of hydration of $CI_{(g)}^{-}$	•)	- 343			
i) Calculate the enthalpy of solution	of calcium ch	nloride.	(2	2marks)	
ii) State how the solubility of calciu	ım chloride wa	ould be aff	ected whe	n temperatu	re is
increased. Give a reason for your a	inswer. (1	l½ marks	s)		

17. a) i) Explain what is meant by the term solvent extraction.

- 1640

- 1920

- 1480

- 1360

Enthalpy of hydration

(1mark)

ii) State two conditions under which the partition law is vali	id. 91mark)
b) 25cm³ of ammonia solution in excess was added to 25cm	³ of
$0.1M\ CuSO_4.5H_2O$ solution and the resulting solution shak trichloromethane.	en with 50cm³ of
50cm ³ of the trichloromethane layer required 25.5cm ³ of 0.0	•
20cm ³ of the aqueous layer required 33.3cm ³ of 0.5M hydro	ochloric acid for complete
neutralization. Calculate the molar concentration of; i) ammonia in the trichloromethane layer.	(2marks)
ii) ammonia fixed in the complex $Cu (NH_3)_n^{2+}$	
	romathana ia 25 0)
(Partition coefficient of ammonia between water and trichlo	(3marks)
c) Determine the value of n in the complex ion in b(ii)	(1mark)

•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • • •	•••	• ••	• ••	• ••	• •	•••	•••	•••	•••
•••	•••	•••			•••	•••	•••	•••	•••	•••	•••	•••						•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • • •	•••		• ••				•••	•••	•••
												•••																									
												• • • • • • • • • • • • • • • • • • • •																									
d)	5	Sta	at	e	or	ıe	ol	th	er	a	pp		ca	ti	on	C	of '	th	e	pa	art	iti	io	n	la	W							(11	m	ar	k)

***END ***