Name:	dex
No/	
Sianature	

RESOURCEFUL MOCK 2017

Uganda Advanced Certificate of Education
CHEMISTRY P525/1
TIME: 2¾ HOURS

INSTRUCTIONS TO CANDIDATES

Answer **all** questions in section **A** and **six** questions in section **B**All questions must be answered in the spaces provided

Mathematical tables (3 –figure tables) are adequate or non –programmable scientific electronic calculators may be used.

Illustrate your answers with equations where necessary

- Molar gas constant, $R = 8.31 \text{ JK}^{1} \text{mol}^{1}$
- Molar volume of gas at s.t.p is 22.4 litres
- Standard temperature = 273K
- Standard pressure = 101325Nm²
- Faraday constant = 96500C

							For E	Exam	iner's	use	only						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A

Answer all questions from this section

1.			ndard electrode potentials for the system $Ag_{(s)}/AgCl_{(s)}/CuC$ and $+0.340$ volts respectively.	$I_{2(aq)}/Cu_{(s)}$ are
	a.	Write i) 	e the equations for the half-cell reactions that take place at Anode	the: [1mk]
		ii)	Cathode	[1mk]
	b.	Write	e the overall equation for the cell reaction.	[1mk]
	C.	Calcu	ulate: The e.m.f of the cell	
		ii)	The standard free energy of the cell	[1½ mks]

	d.	i) State whether the[½ mk]	reaction is	feasib	le or not			
		ii) Give a reason for	your answ	er in d	l (i)			[½ mk]
_	_				.1.			
2.		omplete the following	equations	and ou	itiine a m	echanism 1	or the	reaction in
		ch case.	NUICU		(011 00)	0		
	a.	[31/2]	NHCH₃	+	(CH ₃ CO) ₂	O		
			••• ••• ••• ••• •••		• • • • • • • • • • • • • • • • • • • •	••• ••• ••• ••• •••	••• ••• •••	••• ••• •••
		Mechanism						
			••• ••• ••• ••• •••	••• ••• •••	• • • • • • • • • • • • • • • • • • • •	••• ••• ••• ••• •••	••• ••• •••	••• ••• •••
			••• ••• ••• •••	••• ••• •••	• • • • • • • • • • • • • • • • • • • •	••• ••• •••	••• ••• •••	••• ••• •••
		··· ···						
	b.	[2mks	CH ₂ - CH	l₂Br +	CH₃ONa [†]		CH₃OH	
		<u></u>				heat		
	Me	echanism						

boi	Calculate the molecular mass of a compound, a 2% aqueous solution of while at 99.977° C when the boiling point of pure water is 99.800° C. [K_b [water 5.2° C per $100g$ mol ⁻¹] [$2\frac{1}{2}$ mks
•••	· ··· ··· ··· ··· ··· ··· ··· ··· ···
	
	
	
	
	··········
L۱	
D)	State nay assumptions you made in calculation [2mks]

...

4.		eryllium is in group (II) of the Periodic Table but it resembles alun in group (III) in some of its properties.	ninium which
	a.	State four properties in which beryllium resembles aluminium.	[4mks]
			
			
	L		[1
	D.	Give one reason for the anamolous behaviour of beryllium.	[1mk]
		··· ··· ···	
			••• ••• ••• •••
5.	a)	Propene was passed through bromine water	
•	i)	State what was observed	[1mk]
	ii)		[1mk]
		·	
	b)	Write a mechanism for the reaction in (a) above.	[3mks]

•••

		••• •••		
6	Ftl		e ionizes when dissolved in water	
٠.		Write:	o formaco vineri disserved ili vvater	
	u)		Equation for the ionization of athylamine	[1½ mks]
		1)	Equation for the ionization of ethylamine	[172 11 IKS]
		••• ••• •••		
		ii)	The expression for the ionization constant, K _b	
			[½ mk]	
	b)	If the i	onization constant of ethylamine is 1.78 x 10 ⁻⁴ mol dm ⁻³ a	t 25°C [K _w =
	,		$^{-14} \mathrm{mol}^2 \mathrm{dm}^{-6} \mathrm{at} 25^0 \mathrm{C}]$	•
		i)	Calculate the PH of a 0.01M solution of ethylamine	[3½ mks]
		'/	calculate the first a clothy colation of ethylanine	[O / Z TTIKO]
		••• ••• •••		••• ••• ••• •••
		••• •••		
		••• ••• •••		

				• • • • • • • • • • • • • • • • • • • •
		ii)	State the assumptions you made in your calculation.	[1mk]
				• ••• ••• •••
		••• •••		
		••• ••• •••		• ••• ••• •••
7	Th	 o mole	ocular formula of compound V is C.H.O. Compound V by	irne with a
/.			ecular formula of compound X, is C ₈ H ₈ O. Compound X be	uiis willi a
		-	ne and forms a yellow precipitate with Brady's reagent.	() (] ()
	a.	Write	the structural formulae and names of all the possible isomer	s of X. [U2]
	b.	X rea	acted with iodine in aqueous solution of sodium hydroxide	to form a
		yellow	/ precipitate.	
		i)	Identify X	
		,	[½ mk]	
				• • • • • • • • • • • • • • • • • • • •
		ii)	Write equations to show how X can be synthesized from	
				[2mks]
				• • • • • • • • • • • • • • • • • • • •

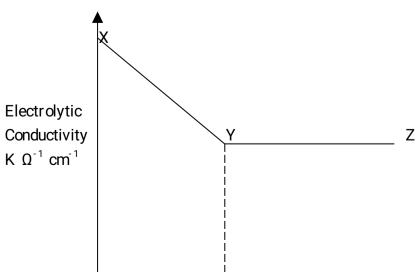
...

8.	Со	ompound Q is a green solid. Q dissolved in water to give a green s	solution. The
		lution of Q formed a red precipitate when reacted with butaned	
		lution. When Q was heated with concentrated sulphuric acid, eth	
		as formed.	
	a.	Identify Q	[½ mk]
			-
	h	Write equation for the reaction that took place when Q was	heated with
	٥.	concentrated sulphuric acid.	[1½ mks]
		concentrated sulpridire dord.	[1/2 1111(0]
	_		uban ayaaa
	C.	Write the equation(s) for the reaction(s) that would take place	
		ammonia solution is added to a solution of Q.	[2mks]
9.	a)	Define the term 'heat of precipitation.'	[1mk]
			

b) 25.0cm³ of 0.5M barium nitrate solution was added to 25cm³ of 0.5M sodium sulphate solution in an insulated container. The temperature of the resulting

the	I the specific heat capacity of the resulting mixture is 4.2Jg ^{-1 0} C ⁻¹ , calculate heat of precipitation of barium sulphate. ½ mks]
	
<i>An</i> : 0. me	CTION B swer six questions from this section thanoic acid (bp 101°C) and water are miscible in all proportions. They form naximum boiling point mixture containing 78% methanoic acid which boils at 8°C.
a.	Sketch a labeled boiling point diagram for mixtures of methanoic acid. [3mks]

mixture rose by 30°C. Assuming that the container had negligible heat capacity


b.	Briefly describe	
D.	i) Why methanoic and water form a maximum boiling point mixtu	ıro [Amke]
	1) Willy methanoic and water form a maximum boning point mixto	II C [4IIIKS]
••• •••		
		· ••• ••• ••• •••
		• ••• ••• •••
	ii) What bennens when a mixture containing 20% methonoic said	io
	ii) What happens when a mixture containing 30% methanoic acid	
		[2mks]
		· ••• ••• ••• •••
11 Wr	rite equations to show how the following compounds can be synthe	sized and in
	ch case, indicate the conditions for the reaction.	S.EGG GIIG III
	or case, maicate the conditions for the reaction.	
a.	NILL from	[Amel s al
	NH ₂ from OH	[4mks]
		· ··· ··· ··· ···

b.	OH CHCH ₃ from
	
C.	$CH_3CH_2CH = CH_2$ from $HC \equiv CH$
	[3mks]
	
12 St	
	ke place when
	Aqueous iron (II) sulphate solution is added to acidified potassium dichromate
	(IV) solution. [2½ mks]
Ob	oservation
	••• •••

b. Hydrogen peroxide is added to acidified potassium manganate (VII) solution.

	Equation	[2mks]
C.		
		·· ··· ··· ··· ···
d.	Ethyne is bubbled through ammonia cal copper (I) chloride solution	on. [2mks]
		

13. The conductimetric curve for the titration of hydrochloric acid and ammonia solution is given below

Volume of ammonia solution

Explain the shape of the curve (XYZ)	[4mks]
	· ··· ··· ··· ··· ···
···	
	• • • • • • • • • • • • • • • • • • • •
···	
	• • • • • • • • • • • • • • • • • • • •
	
	• • • • • • • • • • • • • • • • • • • •
	
	• ••• ••• •••
···	
b) The molar conductivities of copper (II) ethanoate, copper (II) of hydrochloric acid are 195, 266 and $426.2\Omega^{-1}$ cm ² mol ⁻¹ respectively dilution at 25° C. Calculate	
i) Molar conductivity of ethanoic acid at infinite dilution.	[1½ mks]
i) Words conductivity of charles dota at immite direction.	[1 / 2 11 IKO]
···	

	electrolytic [3½ mks]	conductivity	of	ethanoic	acid	is	1.66	X	10-4	Ω ⁻¹	cm ⁻¹)
		· ··· ··· ··· ··· ··· ··· ··· ··· ···	••••••			•••		•••	• • • • • • • • • • • • • • • • • • • •	· ••• ••• •	·· ··· ···
									···· ··· ···	·	
					• • • • • • • • • • • • • • • • • • • •			•••	••• ••• •••	• • • • • • •	
	•••••										
			•• ••• •	•• ••• ••• ••• •••	• ••• •••	•••	••• •••	•••	• ••• •••	• ••• ••• •	•• •••
	Compound R contail Calculate the er				41.7%	an	d wat	er 2	21.1%	[2m	ksl
u.											
					• ••• •••	•••		•••	••• ••• ••	• • • • • •	•• •••
	•••				· ••• •••				· • • • • • • • • • • • • • • • • • • •	· ••• ••• •	
									···· ··· ···	· • • • • • • • • • • • • • • • • • • •	
					• ••• •••	•••		•••	••••••	• • • • • •	•• •••
	ii) Determine the	molecular forn	nula	of R (Vap	oaour	den	sity of	R	= 85.	5) [1	lmk]
			•• ••• •	•• ••• ••• •••	• ••• •••	•••	••• •••	•••	•••••••	• ••• ••• •	•• •••
					· ••• •••				· • • • • • • • • • • • • • • • • • • •	· ••• ••• •	
									··· ··· ···	· • • • • • • • • • • • • • • • • • • •	
					• ••• •••	•••		•••	•••••••	• ••• ••• •	•• •••

Dissociation constant Ka of a 0.01M ethanoic acid solution (the

ii)

b.		solution of R in water was divided into two parts	
	i)	The first part of the solution was tested with blue litmus paper.	
		State what was observed and write equation for the reaction that	took place [2mks]
	ii)	To the second part of the solution was added concentrated h	nydrochloric
		acid drop wise until in excess.	
		State what was observed and write equation for the reaction.	[2½ mks]
C.	Th	ne resultant in b (ii) was diluted.	
	i)	State what was observed	[½ mk]
	•••		
	•••		
	ii)	Write the equation for the reaction that took place.	[1mk]
15.	. Na	ame one reagent that can be used to distinguish between the follow	ing pairs of
	COI	mpounds and state what would be observed in each case if the	ne reagents
	rea	acted with the compounds.	
	a.	COCH₂CH₃ COCH	3
		[3m/	
		and	

Reagent

	Observation	
		••• ••• ••• ••• ••• ••• •••
	··········	
L		[Opoleo]
D.	CH ₃ CH ₂ CH ₂ OH and (CH ₃) ₃ COH	[3mks]
	Reagent	
	Observation	
C.	CH ₃ CH ₂ CH ₂ NH ₂ and NH ₂	
O.	[3mks]	
	Reagent	
	Reagent	
	Observation	
16. a)	What is meant by the term 'common ion effect'?	[2mks]
	• •••	
	···········	
	··· ···	

-	Lead (II) chloride is sparingly soluble in water rite:	
i)	the equation of solubility of lead (II) chloride in water	[1½ mks]
ii) 	the expression for the solubility product K_{sp} of lead (II) chlorid	
 c)	The solubility product Ksp, of lead (II) chloride is 2.0 x 10 ⁻⁵ mol ³ Calculate the concentration of the following ions in a saturated lead (II) chloride.	
	i) Lead (II) ions	
		•••••••
		······································
	ii) Chloride ions	
		·
		···· ··· ··· ··· ···
d)	Calculate the concentration of lead (II) nitrate that should be a saturated solution in (c) in order to reduce the concentration of tions to a third of its original value.	

	·········	
17. a)	Distinguish between a thermoplastic and a thermosetting plastic.	[2mks]
	········	
b)	The structural formula of polyvinyl chloride (P.V.C) is;	
((CH ₂ - CHCl - CH ₂ - CHCl) _n	
W	/rite:	
i)	the structural formula and name of the monomer	[2mks]
ii)	the equation for the reaction leading to the formation of P.V.C	[1mk]

	The osmotic pressure of a solution containing 4.0g dm ⁻³ of polyvitetrechloromethane is 68NM ⁻² at 20°C.	inyl chloride
	Iculate the number of monomer units in the polyvinyl chloride.	[3mks]
d)	Give one use of polyvinyl chloride.	[1mk]

END